Chapter 4

NADA


Nondetects And Data Analysis:
Statistics for censored environmental data
Answers to Exercises

using Minitab (version 14) statistical software

These answers are for exercises in the textbook Nondetects And Data Analysis: Statistics for Censored Environmental Data , by Dennis R. Helsel, published by Wiley in 2004.  The book is available from all local and online booksellers, including www.wiley.com .  All data sets can be found at the book’s online webpage:

http://www.practicalstats.com/nada 
in both Minitab (*.mtw) and Excel (*.xls) file formats.  Also found there are all Minitab macros (*.mac) used to compute the in-text examples and these exercises.

Dennis R. Helsel

October 2004

Chapter 4

4-1
Millard and Deverel (1988) measured copper and zinc concentrations in shallow ground-waters from two geological zones underneath the San Joaquin Valley of California.   One zone was named the Alluvial Fan, the other the Basin Trough.  Their data are found in the data set CuZn (use CuZn.xls if using software other than Minitab).  In addition to the two columns of concentrations, there are paired columns in the Indicator Variable format designating which of the observations represent detected concentrations, and which are “less-thans”.  The indicator variable names (CuLT=1 and ZnLT=1) show that “less-than” observations have a value of 1, while detected observations are indicated by a 0.  

Create two new variables in the Interval Endpoints format, StartCu and EndCu, that will contain the same information given by the current variables Cu and CuLT=1.

The variable StartCu will have value of 0 for all nondetects, while equaling Cu for detected observations.  This can be computed in the Calculator using

'StartCu' = 'Cu' * (1-'CuLT=1')

The variable EndCu will just be a duplicate of Cu, and as such is unnecessary.  Cu can be used as the ending variable of the interval endpoints format.  The first several lines of the data set will look like:

Cu  CuLT=1   Zn    ZnLT=1      Zone      StartCu
EndCu

 1
   1
    10
1
Alluvial Fan
0
  1

 1
   1
     9
0
Alluvial Fan
0
  1

 3
   0
     *
*
Alluvial Fan
3
  3

 3
   0
     5
0
Alluvial Fan
3
  3

 5
   0
    18
0
Alluvial Fan
5
  5

 1
   0
    10
1
Alluvial Fan
1
  1

For the first two observations, the interval endpoints format states that copper concentrations are known to be somewhere between 0 and 1 g/L.  The StartCu and EndCu columns show that the third (detected) observation is at 3 g/L.

4-2
What problem may have occurred with the following censored data set?  What characteristics lead to that conclusion?
0.55  0.6   0.8  0.85  0.9  <1  <1  <1  <1  <1  1.0  1.2  1.7  1.8  2.2  2.6  3.5

The characteristics to notice are 

1)
the presence of ‘detected’ values lower than the lowest reporting limit of 1, and 

2)
a reporting limit which if halved is lower than all reported values.

These can result from only two possibilities:

a)
there was a lower reporting limit in force whose value was not given, and all observations measured with that reporting limit in force happen to be above it.  This is unlikely.  Or

b)
informative censoring (also called “insider censoring”) was used.  This is much more likely, given that one-half the reporting limit or 0.5 is lower than all of the reported values.  The laboratory’s detection limit was probably 0.5, and the five nondetects measured as <0.5 were reported as <1.  This insider censoring (a reporting limit of 1 used for some data, but not for values measured between 0.5 and 1) distorts the data distribution, producing a high bias for any summary statistics or other numerical procedures used on these data as they are reported.

4-3
Flip the copper concentrations for the Alluvial Fan zone to a right-censored XE “right-censored data” \i  format and store in a new variable named something like “FlipCu”.  Plot both Cu and FlipCu with either a boxplot or histogram (ignoring the less-than indicators at this point).  How do the plots of the two variables compare?  Given that the variable Cu is skewed, take logarithms and repeat the process.

The largest Cu concentration is 23: 

Descriptive Statistics: Cu 

Variable    N  N*   Mean  SE Mean  StDev  Minimum     Q1  Median     Q3

Cu        114   4  5.105    0.445  4.753    1.000  2.000   3.000  6.250

Variable  Maximum

Cu         23.000
so using the calculator, Cu concentrations were subtracted from 30, a value larger than 23, to flip the data:
Let 'FlipCu' = 30-'Cu'
The first several rows of data look like:

Row  Cu  CuLT=1  FlipCu

  1   1       1      29

  2   1       1      29

  3   3       0      27

  4   3       0      27

  5   5       0      25

  6   1       0      29

From the histograms, one variable is seen to be the reverse shape of the other.

[image: image1.png]
The same can be seen from their boxplots:

[image: image2.png]
Natural logarithms are computed and stored in a new variable LnCu using the calculator

Let 'LnCu' = LOGE('Cu')

The resulting data are subtracted from 5, a value larger than the largest log (3.13), to flip the data.     Let 'FlipLnCu' = 5 - 'LnCu'

Boxplots and histograms for the log-transformed variable and its flipped version are shown below:

[image: image3.png]
[image: image4.png]
In this scale the data are more symmetric, but still do not appear to follow a normal distribution.

Chapter 5

5-1
Plot a censored boxplot and censored histogram for Millard and Deverel’s (1988) zinc concentration data found in the data set CuZn.  Use the Minitab macros chist.mac and cbox.mac.  The zinc concentrations will need to be split into two columns, one for each zone, to plot the censored histograms.  The censored boxplots can be plotted with one command:
%cbox c3 c4 c5   (or abbreviating,  %cbox c3-c5)
and a box will be drawn for each group listed in column c5.

Describe the results – what characteristics of the data will likely be important for further data analysis?

Using the cbox macro, the censored boxplot is: 

[image: image5.png]
Using the Unstack command, the Zn data is split into two columns, one for each Zone:

MTB > Unstack ('Zn');

SUBC>   Subscripts 'Zone';

SUBC>   After;

SUBC>   VarNames.

The same thing is done to the indicator column, producing one indicator column for each Zone.  Then using the chist macro, the censored histograms are:

[image: image6.png]
(where the outlier at 620 is not shown)

[image: image7.png]
The primary characteristics to be concerned with are the large outlier in the Alluvial Fan Zone, and the marked skewness of the Basin Trough values.  Both characteristics will cause havoc with distributional methods such as Maximum Likelihood unless they are accounted for by some method such as working on a logarithmic scale.

5-2
The atrazine data used in this chapter are found in the data set Atra.  Draw an empirical distribution function plot (edf XE "edf" \i , also called a cdf) for the June atrazine data.  In Minitab this is done using the  Graph > Empirical cdf  command.  Using the Distribution dialog box, select “lognormal” as the best fitting distribution.  A lognormal distribution will be plotted as a blue line, and the empirical cdf with a red step function.  Compare the resulting plot to the survival function XE "survival function" \i  plot of Figure 5.8.  How are the two plots related?

The primary difference between the edf plot below and the survival function plot of Figure 5.8 is that the directions are reversed.  On closer look, the edf uses the detection limit value for all nondetects, treating them as equivalently observed data with the detected observations, while the survival function plot more accurately recognizes these data as censored and does not plot them at a specific location.  The values for the nondetects are used by the survival function plot to determine the locations at which to plot the detected observations, but the nondetects are not individually plotted.

[image: image8.png]
Chapter 6

6-1
The copper data from the Alluvial Fan zone of Millard and Deverel (1988) is found in the data set MDCu+ (use either MDCu+.mtw or MDCu+.xls).  One observation has been changed from the data in their article.  The largest detection limit of <20 was altered to become a <21, larger than all of the detected observations reported (the largest detected observation is a 20).  Compute Kaplan-Meier XE "Kaplan-Meier" \i  estimates of the mean and median for two situations, one with the <21 in the data set and a second with the <21 removed from the data set.  Demonstrate from the results that a censored observation whose threshold is above the largest detected observation has zero information content and can always be discarded.  Also demonstrate why this is so by computing plotting positions by the robust ROS XE "ROS" \i  method for these data.

To use Kaplan-Meier, the data must first be flipped to be right-censored.  Each value of Cu_Alluvial is subtracted from 30 (21 is the maximum value):


Let 'FlipCu' = 30-'Cu_Alluvial'

and then the Reliability/Survival > Distribution Analysis (Right-Censoring) > Nonparametric Distribution Analysis command is run on FlipCu.  Estimated mean and median are:

Standard   95.0% Normal CI

Mean(MTTF)     Error    Lower    Upper

   26.3877  0.465487  25.4753  27.3000

Median = 28

IQR = 2  Q1 = 26  Q3 = 28

which when subtracted from the flipping constant of 30 produces these estimates in original units:

mean = 3.61



median = 2

Next the procedure is rerun after first changing the <21 value to a missing value indicator (*).  The Kaplan-Meier method is rerun, and estimates of mean and median are exactly the same:

Standard   95.0% Normal CI

Mean(MTTF)     Error    Lower    Upper

   26.3877  0.465487  25.4753  27.3000

Median = 28

IQR = 2  Q1 = 26  Q3 = 28

There is no information in any censored observation that is above the largest detected observation.  It does not affect the plotting positions (percentiles) of the detected observations, and so deleting it changes nothing.

Using the ROS method (see Helsel and Cohn, 1989), the probabilities of exceeding (PE) each of the 5 detection limits (DL) are:

  j   DL         PE

  1    1    0.919290

  2    5    0.213077

  3   10    0.079133

  4   20    0.015625

  5   21    0.000000

There is a zero probability of exceeding the largest detection limit of 21.  This is because for the j=5th detection limit of 21 in this dataset,

[image: image9.wmf]  
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 =  the number of observations detected between the jth and (j+1)th detection limits, equals zero.  Also, 
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equals 0, and the plotting position for the censored observation at <21 
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  equals 1.  In essence, this point plots off the high end of the probability plot.  Deleting this observation from the data set will make no difference in the plotting positions or estimated concentrations for any of the detected or nondetected observations below it.  It provides no information content when determining values for any other observation in the data set.
6-2
The silver.mtw data set contains analyses from 56 laboratories for a quality control standard silver solution (Helsel and Cohn, 1988).  There are twelve detection limits reported by the different labs. Produce a survival function XE "survival function" \i  plot for the silver data using Kaplan-Meier XE "Kaplan-Meier" \i  software.  Also produce a censored probability plot using robust ROS XE "ROS" \i  and with lognormal MLE.  The ROS method can be computed using the Minitab macro Cros.mac.  Compare and contrast the three plots.  Which better illustrates how well the data are fit by the assumed distribution?  Which would you use to get a rough estimate for the percentiles of the distribution?

The survival function plot is generated by first flipping the data to create a right-censored variable

Let 'FlipSilver' = 563-'Silver'  

then plotting using the Reliability/Survival > Distribution Analysis (Right-Censoring) > Nonparametric Distribution command:

[image: image14.png]
The long flat ‘mesa’ from the left-hand side results from an outlier, the largest silver concentration at 560 g/L.  The distribution is skewed.  A lognormal distribution would provide a better fit than a normal distribution with this amount of skewness.

A lognormal probability plot produced by the Cros macro for the silver concentrations is obtained by 


%cros c1 c2

[image: image15.png]
A lognormal MLE is computed in Minitab using the command 
Stat>Reliability/Survival>Distribution Analysis (Arbitrary censoring)>Parametric Distribution Analysis
setting the start variable to silver0, and the end variable to silver.  A lognormal distribution is specified, and maximum likelihood must be specified in the Estimate dialogue box (otherwise, a parametric ROS method will result). The probability plot is produced by checking its option in the Graphs dialogue box.  The result looks similar to the ROS plot, though the axes are reversed.

[image: image16.jpg]
Either of the probability plots provides a visual guide for whether the data appear to fit a lognormal distribution.

6-3
Estimate the mean, standard deviation, median, 25th, and 75th percentiles of the silver data using (lognormal) maximum likelihood estimation, Kaplan-Meier XE "Kaplan-Meier" \i , and the robust ROS XE "ROS" \i  methods. Compare and contrast the three results.  How must the K-M percentiles be re-scaled in order to compare them with those from the other methods?  Based on the percent of data censored, the sample size and the fit to the distribution, which method would you choose to use?


[image: image17]                        Lognormal      Kaplan-Meier     Robust ROS

                           MLE                         (Cros macro)
Mean(MTTF)                5.73            12.65           12.5
Standard Deviation       97.03            76.52           75.5
Median                    0.34             0.20            0.24
25th Percentile            0.07             0.1             0.06
75th Percentile            1.68             1.5             1.37
The Kaplan-Meier percentiles have to be subtracted from the flipping constant in order to obtain values in original units.  Because large concentrations are small flipped data, the 25th percentile of the flipped data is the 75th percentile of concentration (as shown in the boxplots of problem 4-3).  Other percentiles must be similarly reversed.
There are 56 observations, 61% of which are censored.  The recommendation in the textbook for this situation is to use MLE if the data could be assumed to follow a specific distribution.  If based on a test or the probability plot below there was concern about the assumption of a lognormal distribution, perhaps because of the two large outliers at the upper end, either of the other two more robust methods could be used.

[image: image18.jpg]

Chapter 7
7-1
Using the zinc data from the Alluvial Fan zone of Millard and Deverel (1988) found in the data set CuZn, compute a 95% confidence interval on the mean zinc concentration, assuming the data follow a normal distribution.  Based on a probability plot, is this assumption reasonable?  If not, estimate a 95% confidence interval using bootstrapping and by using Land’s method.  How do these two intervals compare?


[image: image19]Using censored MLE assuming a normal distribution, the mean and 95% confidence interval from Minitab are:

                              Standard    95.0% Normal CI

                    Estimate     Error     Lower     Upper

Mean(MTTF)           22.3716   9.05588   4.62242   40.1208

The probability plot is strongly curved, so that assuming a normal distribution is not warranted.  Confidence interval endpoints will be suspect.  If MLE is used, assume a lognormal distribution instead.
[image: image20.jpg]
Bootstrapping with the MLEBoot macro, the upper end of the confidence interval is lower than the symmetric normal-theory interval.  A lognormal distribution is a better assumption than normal for these data.  Estimates of the mean also have a skewed distribution (see graph below):
                                               95.0% Normal CI

Bootstrap (Lognormal)     Estimate              Lower    Upper

Mean(MTTF)                 17.74                14.26    22.26

[image: image21.jpg]
To obtain Land’s estimated confidence bounds, estimates from lognormal MLE are:

Distribution:   Lognormal

                      Standard    95.0% Normal CI

Parameter  Estimate      Error     Lower     Upper

Location    2.57888  0.0809329   2.42025   2.73750

Scale      0.849183  0.0624266  0.735236  0.980791

and so Land’s estimates are:
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=
14.72,  25.91
where -2.08 and + 2.63 are values for Land’s H statistic tabled in Gibbons and Coleman (2001) with m=50 degrees of freedom, alpha = 0.025 and 0.975, and interpolated halfway between s = 0.8 and s = 0.9.  The bootstrapping interval is shorter, especially on the upper end.

7-2
Estimate a 90% nonparametric confidence interval around the median of the zinc data using the binomial method (first re-censoring at the highest detection limit).  Then compute the interval using the B-C sign method.  How do these intervals compare?  Which would you choose to use?


[image: image24]
Of the 67 Alluvial Fan zinc concentrations, 16% are nondetects.  After censoring all values below 10 to be a <10, 30% (20 observations) are nondetects.  The sample median at the 50th percentile is the sample median of the dataset, a (detected) 10.  A 90% confidence interval around 10 is computed using the 1-sample sign command in Minitab:

                                       Confidence

                            Achieved    Interval

           N  N*  Median  Confidence  Lower  Upper  Position

Zn10Allv  67   1   10.00      0.8574  10.00  10.00        28

                              0.9000  10.00  10.69       NLI

                              0.9128  10.00  11.00        27

The 90% interval is (10, 10.69) after interpolation.  The position of 27 or 28 up from the low end reaches a detected value of 10.
The Kaplan-Meier estimate of median is also 10.  A 90% B-C sign interval is computed by storing the survival probabilities 
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 for the flipped Zn data.  Using equation 7.30, the sign statistic values are computed as:
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.  These are printed in the the second through fourth columns of the table below.  Comparing the Z statistics in the fourth column (SignZ) to
the z-statistic for an alpha of 0.05 (-1.64) and 0.95 (1.64), we obtain a 90% confidence interval.  The endpoints are at Z statistics of 1.61 (the first Z value less than 1.64) and 
-3.6042 (the first Z value less than -1.64).  The corresponding zinc concentrations are 11 and 10, respectively (bold in list, below).  So the B-C 90% interval for the median is (10, 11), essentially the same as the binomial interval.
Time        S-hat     SE S-hat    SignZ    Zn Alluvial
  80    0.985075    0.0148136    32.7453       620
 650    0.970149    0.0207902    22.6139        50
 660    0.955224    0.0252661    18.0172        40
 667    0.940299    0.0289460    15.2110        33
 670    0.925373    0.0321047    13.2496        30
 671    0.910448    0.0348842    11.7660        29
 677    0.895522    0.0373691    10.5842        23
 680    0.686567    0.0566730     3.2920        20
 681    0.671642    0.0573727     2.9917        19
 682    0.656716    0.0580067     2.7017        18
 683    0.641791    0.0585771     2.4206        17
 688    0.626866    0.0590857     2.1471        12
 689    0.597015    0.0599238     1.6190        11
 690    0.298507    0.0559051    -3.6042        10
 691    0.238806    0.0696539    -3.7499         9
 692    0.179104    0.0735001    -4.3659         8
 693    0.119403    0.0691172    -5.5065         7
 695    0.059701    0.0545567    -8.0705         5
7-3
Construct a flow chart of the methods of this chapter for computing confidence intervals.  Ignore methods known to be inadequate, such as the Greenwood pdf-Z method.  Make sure that determining whether the data follow a normal or lognormal distribution figures prominently in your chart.  Which method could appear throughout the chart, and work well regardless of the shape of the data distribution?


[image: image28]

Assume a distribution
No distribution assumed


Parametric Intervals
Nonparametric Intervals



(see next page)


Confidence Interval
Prediction Int
Tolerance Int

on mean

(also called a CI on percentile)
Normal Dist
Lognormal Dist
Transform to normal dist

Normal MLE
Lognormal MLE
compute using normal MLE


Lognormal ROS
and then retransform


n>=100
n<100


Land’s
bootstrapping


Confidence Interval on median

 Normal Dist
Lognormal Dist

Normal MLE
Lognormal MLE


Lognormal ROS


(retransform CI on mean logarithm)

No distribution assumed


Nonparametric Intervals

Confidence Interval
Prediction Interval
Tolerance Interval

 
Binomial Int for Median (1-dl)
(see Meeker and Hahn textbook)

B-C sign Interval for Median

 Bootstrapped K-M Interval for Median
Bootstrapping is the method that could be used throughout this chart, regardless of the distribution of the data.

Chapter 8

8-1
Thurman et al. (2002) measured concentrations of antibiotics in discharges from fish hatcheries across the United States.  A summary of the data are found in hatchery.xls.  Twenty-five samples contained no concentrations of tetracycline above the detection limit of 0.05 g/L. Two samples did contain detectable concentrations, but these were believed to be analytical artifacts from another compound, and the observations were discounted.  Based on twenty-five nondetects, and assuming that these hatcheries represent the conditions found at others to be sampled in the future, what is the likelihood of getting at least one detection in the next 15 samples analyzed?


[image: image29]
Using the 1-proportion command in Minitab, a 95% confidence interval on the true proportion of detected observations in the population is 0 to 11 %:

                                                 Exact

Sample  X   N  Sample p         95% CI         P-Value

1       0  25  0.000000  (0.000000, 0.112928)    0.000

For 15 new samples we can expect to observe somewhere between 0 and 1.7 (0.113 * 15) detects.  The likelihood of observing zero detects in all of the next 15 observations is between
Binomial (0, 15, 0.113) = (1) 1 * (1-0.113)15 =  0.17, or 17%, and  

Binomial (0, 15, 0) = (1) 1 * (1-0)15 =  1 .

Therefore the probability of getting at least one detection in any of the next 15 samples is between 0 and 83%, with 95% confidence. 

8-2
Assuming these 25 locations reasonably represent fish hatcheries across the US, estimate a 90% confidence interval on the proportion of concentrations of tetracycline below 0.05 g/L in waters draining fish hatcheries in the United States.


[image: image30]
A 90% confidence interval on the proportion of waters draining fish hatcheries that have concentrations below 0.05 based on an observation that all 25 sampled are below 0.05 is between 0 and 8.8%:
                                                 Exact

Sample  X   N  Sample p         90% CI         P-Value

1       0  25  0.000000  (0.000000, 0.087989)    0.000

8-3
Use a contingency table analysis (see Chapter 10) to determine if the proportion of detections for oxytetracycline is significantly different than that for tetracycline.


[image: image31]
Using the Minitab command

Stat>Tables>Chi-Squared Test

and selecting the two columns for Oxytetra- and Tetra-cycline:

Chi-Square Test: Oxytetracycline, Tetracycline 

Expected counts are printed below observed counts

Chi-Square contributions are printed below expected counts

       Oxytetracycline  Tetracycline  Total

    1                7             0      7

                  3.63          3.37

                 3.116         3.365

    2               20            25     45

                 23.37         21.63

                 0.485         0.524

Total               27            25     52

Chi-Sq = 7.490, DF = 1, P-Value = 0.006

2 cells with expected counts less than 5

The two proportions of 26% and 0%, respectively, are found to be significantly different (p = 0.006).

8-4
MTBE in groundwater is a concern for drinking water supplies in states where the compound has been used as a gasoline additive.  If in a survey of a county’s drinking-water supply wells, all 36 measurements have been recorded as below the detection limit of 3 ppb, the data are assumed to be lognormal, and the standard deviation of the logarithms (based on other data) is estimated to be1.0, what is an estimated probability of exceeding the “level of concern” of 13 ppb in groundwater?


[image: image32]
From equation 8.3:
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 =
0.998

The health standard of 13 is at the 99.8th percentile of the data distribution.  There is a 0.2% chance of exceeding the standard of 13.

Chapter 9

9-1
Eppinger et al. (2003) measured metals concentrations in stream sediments at 82 sites in New Mexico in 1996.  After wildfires occurred throughout the region in 2000, each site was re-sampled to determine if concentrations had changed following the fires.  Several mechanisms were proposed for why this might be so.  Data for lead are found in SedPb.xls.  Test to determine whether lead concentrations, some of which are recorded as below a single detection limit of 4 g/L, have changed pre- and post-fire.  Note that the data are paired by sampling location.


[image: image37]
Paired t-test:  The parametric test for whether the mean lead concentration differs is the paired t-test.  It can be computed for censored data using a 95% confidence interval on the paired differences, estimated by maximum likelihood.  The macro for computing this is PMLE.

%PMLE c1 c3 c2 c4     (computes differences as c1-c3, or 2001-1996)

with results

                     Standard    95.0% Normal CI

Parameter  Estimate     Error      Lower    Upper

Mean       0.453097  0.469548  -0.467200  1.37339

StDev       4.23975  0.332084    3.63638  4.94324

Zero is inside the 95% confidence interval on the mean difference, so the two group means cannot be declared significantly different at alpha = 0.05.  The mean difference is estimated as 0.45 g/L higher in 2001, but this cannot definitively be declared different than zero (at alpha = 0.05).  Boxplots show the data to be approximately normal (perhaps slightly left-skewed).
[image: image38.jpg]
For a direct nonparametric test to determine if medians differ, either the PPW test or the sign test can be used, the latter because there is only one detection limit.  To compute the sign test, use the Csign macro to correctly account for the numbers of ties – comparing a <1 to a <1 should be evidence for similarity of the two groups.  However these ties are ignored by standard software when computing the sign test.  To illustrate the difference, the sign test will be computed both ways.

Standard Software:  Multiply the detection limit value for all nondetects by one-half, or one-third, or zero, or any number less than one.  This insures that a comparison between a <dl and a detected value at the dl, here <4 versus 4, is correctly seen as other than a tie.  After multiplying nondetects by one-half the difference in the two columns is stored in Half01-96, the Nonparametric > 1-sample sign  command in Minitab is chosen:
            N  Below  Equal  Above       P  Median

Half01-96  82     24     15     43  0.0279   1.000

The sign test uses only the algebraic sign of differences, so (5- <4) is a +, as is (20-5).  This characteristic makes it directly applicable to data censored at one limit.  The p-value for the test states that lead concentrations are a median of 1 g/L higher in 2001, because there are more consistent increases than decreases in value from 1996 to 2001.  However it has ignored the number of ties that occur when computing the test results.  For data sets with many ties such as heavily censored data, this results in rejection of the null hypothesis more often than should occur.
Csign macro:  The Csign macro uses the correction of Fong et al. (2003) to incorporate the number of ties as evidence for the null hypothesis when computing the sign test.  
Type   %csign c1 c3 c2 c4  and the results are:
Sign Test for Median: 2001-1996 

Sign test of median =  0.00000 versus not = 0.00000

            N  Below  Equal  Above       P  Median

2001-1996  82     24     15     43  0.0279   1.000

p-value (adjusted for 'Equal' ties) = 0.3892

Accounting for ties, the null hypothesis is not rejected (p = 0.3892).
PPW test:  The nonparametric Paired Prentice-Wilcoxon test uses the information in the magnitude of the differences when computing its test.  Run the PPW macro as:

%PPW c1 c3 c2 c4
to get

PPW test 

Paired Prentice-Wilcoxon test

(NonPar test for equality of paired left-censored data)

     Ho:  distribution of 2001 = 1996

vs   Ha:  not =

Test Statistic: 0.535

       p value: 0.592

The PPW test finds no difference in the median lead concentration in the two years.  An approximate boxplot on the differences shows both positive and negative differences.
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The PPW and adjusted sign tests agree.  Use either with one detection limit.  For multiple detection limits the PPW test must be used.

9-2
Yamaguchi et al. (2003) measured concentrations of the pesticide lindane in fish and eels collected at several sites in the United Kingdom.  One site was below Swindon, an active industrial area draining to the Ray River, a tributary to the Thames.  To avoid differences due to types of fish, data presented here are for only one species (Roach) at two sites, Swindon and a site further downstream on the Thames River, in the file Roach.xls.  There was one detection limit, at 0.08 g/kg.  Test whether lindane concentrations are the same or different at the two sites, using both the parametric “t-test” performed with censored regression, and a nonparametric Wilcoxon score test.
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A “start” variable for the interval-censored format was created, and Regression With Life Data run using one explanatory variable, a 0/1 variable (Location) with 0 for Hannington Bridge and 1 for Swindon.  The regression output shows that the mean concentrations at the two sites differ (p=0.003), with the mean at Swindon 0.15 units (the slope coefficient) higher than at Hannington Bridge.
Regression Table

                       Standard                  95.0% Normal CI

Predictor       Coef      Error     Z      P       Lower     Upper

Intercept  0.0400000  0.0350227  1.14  0.253  -0.0286432  0.108643

Location    0.151388  0.0512498  2.95  0.003   0.0509401  0.251836

Scale      0.0824636  0.0183239                0.0533483  0.127469

For the Wilcoxon score test, the Lindane data are flipped, tested and medians found to differ by the Generalized Wilcoxon test (p = 0.034).
Distribution Analysis: FlipLindane by site 

Comparison of Survival Curves

Test Statistics

Method    Chi-Square  DF  P-Value

Log-Rank     4.62403   1    0.032

Wilcoxon     4.50000   1    0.034

The median concentration at Hannington Bridge is < 0.08, while at Swindon it is 0.23.

9-3
Squillace et al. (1999) related VOC concentrations in groundwater XE "groundwater" \i  throughout the United States to population density.  The data for one compound, chloroform, in the state of California is presented in ChlfrmCA.xls.  Observations are grouped by whether they are from urban areas (population density > 386 people per acre) or rural areas (population density < 386 people per acre).  Determine if the mean/median concentration of chloroform is higher in the urban areas than in the rural areas.  Use both a parametric and nonparametric test.  There are two detection limits.
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For the nonparametric test, the chloroform concentrations were flipped by subtracting from 5.  The flipped data were tested with the Generalized Wilcoxon test (we want a one-sided test, but a two-sided p-value is all that is provided):

Comparison of Survival Curves

Test Statistics

Method    Chi-Square  DF  P-Value

Log-Rank     2.78428   1    0.095

Wilcoxon     2.81556   1    0.093
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From the survival curve, the rural values for flipped data are larger, so for concentrations the urban values are higher.  The differences are at the upper end of the distribution (greater than 86th percentile – see the survival plot) in the direction expected prior to computing the test, so the 2-sided p-value can be cut in half.  The one-sided p-value is 0.045, just barely under the 0.05 cutoff, and concentrations in the urban areas are declared higher than those in the rural areas, though the difference is in the upper 15% of concentrations for each site.

The parametric test is performed after creating a start variable, multiplying Chloroform times the LT=0 censoring column.  Regression with Life Data yields a very curved probability plot when a normal distribution was selected.  So a lognormal distribution is selected in the model dialog box, and regression run again.  No differences in the means for the two groups are found (p = 0.29), perhaps due to the small percentage of detected values.
Regression Table

                     Standard                  95.0% Normal CI

Predictor      Coef     Error      Z      P      Lower     Upper

Intercept  -6.58301  0.964191  -6.83  0.000   -8.47279  -4.69323

Pop Grp    0.768868  0.728604   1.06  0.291  -0.659170   2.19690

Scale       3.25208  0.559662                  2.32100   4.55667

.

Chapter 10

10-1
Golden et al. (2003) measured concentrations of lead in the blood and in several organs of herons in Virginia, in order to relate those concentrations to levels found in feathers.  The objective was to determine whether feathers were a sensitive indicator of exposure to lead.  If so, feathers could be collected in the future so that the birds would not need to be sacrificed in order for their exposure to lead to be evaluated.  The herons received different doses of lead – exposure was categorized into one of four groups: a control group receiving no additional lead, and groups receiving 0.01, 0.05, and 0.25 mg lead per g of body weight.  Determine whether the lead found in feathers of these birds differed among the four exposure groups at an  = 0.05 level.  If so, run a multiple comparison test to determine which groups differ from the others.  Use the methods of this chapter (not substitution!) to test for differences, using the data found in Golden.xls.
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Nonparametric Approach

To compute the nonparametric Generalized Wilcoxon test, flip the feather lead (feather Pb) data by subtracting it from  a number such as 15 that is greater than the maximum observed lead concentration.  Then compute using the nonparametric distribution analysis for right-censored data, splitting the distributions by the lead dosage group.
Comparison of Survival Curves

Test Statistics

Method    Chi-Square  DF  P-Value

Log-Rank     26.0483   3    0.000

Wilcoxon     22.4640   3    0.000

The groups are found to differ at a p-value of 0.000 by the Wilcoxon test.  The stats for each group are:

Lead Dosage

Median

IQR  
0.25


1.0


1.859

0.05


1.0


2.127
0.01


0.20


0.211

0


0.08


0.173

and the survival function plot shows that the 0.25 and 0.05 groups look similar, while the 0.01 and 0 groups look similar:
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To perform multiple comparisons with 4 groups, there are 4(3)/2= 6 possible comparisons.  For an overall 0.05 pattern, any pairwise differences would need to result in a p-value below 0.05/6 = 0.008.  The 0.25 and 0 groups are different (p = 0.001),
Comparison of Survival Curves

Test Statistics

Method    Chi-Square  DF  P-Value

Log-Rank     12.5744   1    0.000

Wilcoxon     10.9356   1    0.001

and the 0.25 and 0.01 groups differ as well:
Comparison of Survival Curves

Test Statistics

Method    Chi-Square  DF  P-Value

Log-Rank     10.7164   1    0.001

Wilcoxon      9.7826   1    0.002

Similarly, the 0.05 group differs from both the 0.01 and 0 groups, with p-values of 0.001 and 0.001, respectively.  Neither of the 0.25 to 0.05 or 0.01 to 0 group comparisons differ.  So the groups are split into two, with 0.25 / 0.05 group different from the 0.01/0 group.
Parametric Approach:

First create a ‘start’ variable by multiplying FeatherPb times (1-BDL1) indicator.  This is the low end of the interval-censored pair representing Pb concentrations.  Using the Regression with Life Data routine and “Lead Dosage” as a Factor, the [StartPb, Pb] pair are tested assuming a normal distribution.  The probability plot shows evidence of non-normality, so a lognormal distribution is assumed instead.  The lognormal probability plot (below) shows that the data fit well to this distribution.
.  
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For the overall test of whether groups differ, the log-likelihood for the regression with life data model with group classification is -15.986:

Estimation Method: Maximum Likelihood

Distribution:   Lognormal

Regression Table

                       Standard                  95.0% Normal CI

Predictor        Coef     Error      Z      P      Lower     Upper

Intercept    -2.36374  0.375814  -6.29  0.000   -3.10032  -1.62716

Lead dosage

 0.01        0.586528  0.519513   1.13  0.259  -0.431698   1.60475

 0.05         2.52447  0.539756   4.68  0.000    1.46657   3.58237

 0.25         2.56358  0.519513   4.93  0.000    1.54536   3.58181

Scale        0.949000  0.135565                 0.717252   1.25563

Log-Likelihood = -15.986

This is compared to the log-likelihood without group classification of -20.070 obtained using the Distribution Analysis command, fitting the arbitrarily-censored data to a lognormal distribution:  

Estimation Method: Maximum Likelihood

Distribution:   Lognormal

Parameter Estimates

                      Standard    95.0% Normal CI

Parameter   Estimate     Error     Lower      Upper

Location   -0.994013  0.291636  -1.56561  -0.422418

Scale        1.50399  0.216426   1.13438    1.99404

Log-Likelihood = -28.070

To test whether there is a significant overall difference among groups, the likelihood ratio test is conducted using equation 10.1:


-2 log likelihood =  -2 * [-28.070 – (-15.986)]
=  24.168
The -2 log likelihood is compared to a chi-square distribution with (k-1) = 3 degrees of freedom.  The resulting p-value of 0.0001 states that there is a difference among the four group mean logarithms.
To determine which groups differ from others, the tests comparing three groups to the 0 dose group are given above in the regression output.  The 0.25 and 0.05 groups have p-values below the Bonferroni pairwise p-value of 0.05/6 = 0.008, and so have mean logarithms that differ from the 0 dose group.  The 0.01 group does not, and cannot be considered significantly different from the 0 dose group.
10-2
Brumbaugh et al. (2001) measured mercury concentrations in fish of approximately the same trophic level across the United States, as well as characteristics for the watersheds they lived in.  The data are found in HgFish.xls.  The variable “LandUse” reflects the dominant land-use within the watershed, and includes categories of Ag/Forested (or “A/F”), Ag, Mining, Urban, and Background.  Test to see if mercury concentrations in fish (variable “Hg”) differ among the 5 land-use categories.  The mercury concentrations have been censored at three detection limits, as indicated with a value of 1 for the variable “HgBDL1”.  Note that the A/F land-use includes watersheds containing the largest proportion of wetlands.
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Nonparametric Approach
To compute the nonparametric Generalized Wilcoxon test, flip the Hg data by subtracting it from a number such as 5 that is greater than the maximum observed mercury concentration.  Then compute using the nonparametric distribution analysis for right-censored data, splitting the distributions by land use group.  There are differences among the groups.
Distribution Analysis: FlipHg by LandUse 

Comparison of Survival Curves

Test Statistics

Method    Chi-Square  DF  P-Value

Log-Rank     74.1797   4    0.000

Wilcoxon     68.7437   4    0.000
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The A/F group is seen to have the highest Hg concentrations (lowest flipped values).

There are 5(4)/2 = 10 possible pairwise comparisons, so each group must differ from another at a p-value of 0.05/10 = 0.005 in order to be considered significantly different.  P-values for comparisons between the land use catgories are given below, after running the Generalized Wilcoxon test for each pair separately.  Significant differences are indicated by placing p-values in bold.

A/F

Ag

Mine

Bkg

Urban

A/F



0.000

0.005

0.000

0.000
Ag





0.898

0.043

0.031
Mine







0.072

0.119
Bkg









0.708
The A/F group has higher concentrations than all other groups.  No other group differences are significant.

Parametric Approach

A variable named “HgStart” is created by multiplying Hg by (1-HgBDL1).  This column contains zeros for censored data, and so is the low end of the interval defining these concentrations.  Using the Regression with Life Data routine and “Land Use” as a Factor, the arbitrarily-censored data pairs of [HgStart and Hg] are tested assuming a normal distribution.  The log-likelihood from this regression model:

Estimation Method: Maximum Likelihood

Distribution:   Normal

Regression Table

                        Standard                   95.0% Normal CI

Predictor        Coef      Error      Z      P       Lower     Upper

Intercept    0.188335  0.0809800   2.33  0.020   0.0296173  0.347053

LandUse

 Bkg.      -0.0180946   0.127493  -0.14  0.887   -0.267975  0.231786

 Mine        0.342731   0.146348   2.34  0.019   0.0558942  0.629569

 Ag          0.116027   0.108933   1.07  0.287  -0.0974788  0.329533

 A/F         0.657244   0.135238   4.86  0.000    0.392182  0.922306

Scale        0.472123  0.0289489                  0.418661  0.532413

Log-Likelihood = -129.826

is compared to the log-likelihood from the null model (Distribution Analysis command):

Estimation Method: Maximum Likelihood

Distribution:   Normal

Parameter Estimates

                      Standard    95.0% Normal CI

Parameter  Estimate      Error     Lower     Upper

Mean       0.354411  0.0454417  0.265347  0.443475

StDev      0.524004  0.0321311  0.464665  0.590920

Log-Likelihood = -143.695

 using equation 10.1 and comparing to a chi-square distribution with (5-1) = 4 degrees of freedom:
-2 log-likelihood =  -2*[-143.695 – ( -129.826) ]   =  27.738

with a p-value of 0.0001.  Therefore there are differences between mean mercury concentrations for the land-use groups.  
Pairwise comparisons between each group and the Urban group are given in the printout, above.  The A/F group mean is significantly different (p-value is 0.000, below the Bonferroni level of 0.005.  No other means are significantly different from one another at that level.  The analysis will need to be re-run with groups other than Urban as the baseline group in order to test all of the possible pairwise comparisons.

10-3
Yamaguchi et al. (2003) measured concentrations of PCBs in fish collected at four sites draining to the Thames River, UK.  Three sites are below Swindon, an active industrial area draining to the Ray River, a tributary to the Thames.  The fourth site, Burford, is on the Windrush tributary and not downstream of Swindon. Test whether PCB concentrations are the same or different in fish at the four sites, using both parametric (censored regression) and nonparametric (Wilcoxon score) tests.  The data are found in Thames.xls.
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Nonparametric Approach

The Generalized Wilcoxon test is computed after flipping the PCB data.  The p-value of 0.002 states that there is an overall difference in the PCB concentrations among the four sites.

Distribution Analysis: PCBFlip by site 

Comparison of Survival Curves

Test Statistics

Method    Chi-Square  DF  P-Value

Log-Rank     16.6873   3    0.001

Wilcoxon     15.1077   3    0.002

Computing the 4(3)/2 = 6 pairwise comparisons, the p-values in the table below are compared to the Bonferroni pairwise p-value of 0.05/6 = 0.008.  Values below 0.008 are in bold, and indicate a significant pairwise difference in medians.
Hann. Bridge

Northmoor

Swindon

Buford



0.005

0.07


0.000
Hann. Bridge




0.307


0.668
Northmoor







0.033
Statistics for each group:

Site



Mean

Median   
Burford


<0.77

<0.77

Hannington Bridge

  2.79

  1.78

Northmoor


  1.82

<0.77

Swindon


  2.51

  2.07

Parametric Approach

After creating a ‘Start’ variable, the concentrations are tested using the Regression With Life Data command.  All data were within the lognormal probability plot confidence bounds, but were within those for a normal distribution.  So the test was performed assuming a lognormal distribution.  The log likelihood for the regression:
Distribution:   Lognormal

Regression Table

                              Standard                 95.0% Normal CI

Predictor               Coef     Error      Z      P     Lower    Upper

Intercept           -114.301   10775.9  -0.01  0.992  -21234.6  21006.0

site

 Hannington Bridge   114.776   10775.9   0.01  0.992  -21005.6  21235.1

 Northmoor           113.848   10775.9   0.01  0.992  -21006.5  21234.2

 Swindon             114.981   10775.9   0.01  0.991  -21005.4  21235.3

Scale               0.816374  0.160570                0.555225  1.20035

Log-Likelihood = -36.818

was compared to the log-likelihood with no regression:

Estimation Method: Maximum Likelihood

Distribution:   Lognormal

Parameter Estimates

                      Standard    95.0% Normal CI

Parameter   Estimate     Error      Lower     Upper

Location   -0.202672  0.270989  -0.733800  0.328457

Scale        1.20612  0.251740   0.801177   1.81573

Log-Likelihood = -48.456

The likelihood ratio test statistic is:

-2*[-48.456  - (-36.818) ]
=  23.276.  With 3 df, the p-value is 0.0002. 
 There is a significant difference between mean logarithms among the four groups.  To obtain p-values, a group other than Burford (which consists of all nondetects) must be used as the baseline or “reference” group.  That is why the confidence intervals and p-values are so large in the table above.  The regression is re-run, setting Swindon as the reference group within the Options dialogue box. 
Distribution:   Lognormal

Regression Table

                               Standard                  95.0% Normal CI

Predictor                Coef     Error      Z      P     Lower      Upper

Intercept            0.680012  0.260799   2.61  0.009  0.168855    1.19117

site

 Burford             -114.981   10775.9  -0.01  0.991  -21235.3    21005.4

 Hannington Bridge  -0.205121  0.433948  -0.47  0.636  -1.05564   0.645402

 Northmoor           -1.13311  0.482742  -2.35  0.019  -2.07927  -0.186953

Scale                0.816374  0.160570                0.555225    1.20035

Log-Likelihood = -36.818

None of the tests have p-values below the Bonferroni p-value level of 0.008.  However, note that the confidence interval and p-value for the Burford to Swindon comparison is quite large.  This is again because parametric methods cannot handle data sets that are all nondetects.  There is no estimate of variance in this case, and so confidence intervals become essentially infinity, and nothing can be distinguished from the Burford site.  Though the overall test strongly indicates that differences are present, the individual comparisons with the Burford site are invalid.  Either collect more data at Burford until at least one detect is measured, or use a nonparametric test (my choice!).
Chapter 11

11-1
Golden et al. (2003) measured concentrations of lead in the blood and in several organs of herons in Virginia, in order to relate those concentrations to levels found in feathers. The objective was to determine whether feathers were a sensitive indicator of exposure to lead.  If so, feathers could be collected in the future so that the birds would not need to be sacrificed in order for their exposure to lead to be evaluated.  Compute a correlation coefficient to determine whether lead concentrations in feathers are associated with concentrations in blood.  Note that both have censored values. The data are found in Golden.xls.
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Parametric approach

The likelihood r-squared for the relationship between lead in blood and feathers is impossible to compute because both x and y have censored values.

Nonparametric approach

Kendall’s tau correlation coefficient is computed using the ckend macro.  The command is
  %ckend c9 c11 c10 c12
 resulting in:

tau = 0.387
p-value = 0.001.

The relationship is weak, but significant.  At issue is whether there is enough of a relation that one could dependably estimate blood levels from concentrations in feathers – this is the realm of regression, discussed in the next chapter.  The plot shows increasing scatter with increasing concentrations, so that if a line were desired in addition to the correlation coefficient, a transformation of one or both variables is likely to be necessary.

11-2
Brumbaugh et al. (2001) measured mercury concentrations in fish of approximately the same age and trophic level across the United States.  Even so, the size of fish varied due to differences in age and species.  Determine whether there is a significant correlation between mercury concentrations (“Hg”) and fish length.  The data are found in HgFish.xls.
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Parametric approach

The x variable length is not censored, so the likelihood r-squared can be computed.  First a ‘start’ variable for Hg is computed as  HgStart = Hg*(1-HgBDL1).  Then the Regression with Life Data command is used for the arbitrarily-censored pair of y-variables HgStart and Hg.  Residuals assuming a normal distribution appear curved.  Residuals assuming a lognormal distribution are much close to a straight line (see below).  So a lognormal distribution is assumed.
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The regression results are:
Estimation Method: Maximum Likelihood

Distribution:   Lognormal

Relationship with accelerating variable(s):   Linear

Regression Table

                         Standard                    95.0% Normal CI

Predictor         Coef      Error       Z      P      Lower      Upper

Intercept     -2.91258   0.228515  -12.75  0.000   -3.36046   -2.46470

length (mm)  0.0052355  0.0008230    6.36  0.000  0.0036224  0.0068486

Scale         0.875113  0.0582369                  0.768101   0.997033

Log-Likelihood = -7.803

To compute the likelihood r-squared, the log-likelihood without regression is computed using the Distribution Analysis (arbitrary censoring) command, also assuming a lognormal distribution (the assumed distribution must be the same for both).

Estimation Method: Maximum Likelihood

Distribution:   Lognormal

Parameter Estimates

                     Standard    95.0% Normal CI

Parameter  Estimate      Error     Lower     Upper

Location   -1.55992  0.0882055  -1.73280  -1.38704

Scale       1.00442  0.0672142  0.880953   1.14518

Log-Likelihood = -25.975

The likelihood correlation coefficient is computed as:

likelihood r-square =  (1- exp[-G2/n] )  
(equation 11.3), where 

G2 =  -2 * (-25.975 – [-7.803] )  =  36.344 .

likelihood r-square =  (1- exp[-36.344/133] )  = 0.239
likelihood r correlation coefficient =  0.49 .
Nonparametric approach

Kendall’s tau correlation coefficient is computed using the ckend macro.  WARNING:  THIS MACRO WILL TAKE TIME TO RUN FOR A DATA SET OF 133 OBSERVATIONS.  RUN OVERNIGHT, OR TAKE A LONG BREAK!

First a censoring column for length is created, consisting of all zeros to indicate that all length measurements are uncensored.  If this is stored in column c16, the command to compute the macro is
  %ckend c4 c5 c16 c6
 resulting in:

tau = 0.285
p-value = 0.001.
There is a weak correlation between the two variables.
11-3
Yamaguchi et al. (2003) measured concentrations of dieldrin and lindane in fish collected at four sites draining to the Thames River, UK.  Determine whether concentrations of the two contaminants in fish are correlated.  Note that both concentrations contain censored values.  The data are found in Thames.xls. 

[image: image52]
Parametric approach

The likelihood r-squared for the relationship between dieldrin and lindane is impossible to compute because both x and y have censored values.

Nonparametric approach

Kendall’s tau correlation coefficient is computed using the ckend macro.  The command is
  %ckend c4 c5 c7 c8
 resulting in:

tau = 0.312
p-value = 0.0001.

There is a significant positive correlation between concentrations of the two chemicals.

Chapter 12

12-1
Atrazine concentrations were measured in streams across the Midwestern United States (Mueller et al, 1997).  Data are found in recon.xls. Measured at each site were the following explanatory variables:

Name 

Description
Area

Basin size

Applic

Atrazine application rate, estimated from statewide estimates

Corn%

Percent of land area of watershed planted in corn

Soilgp
Soil hydrologic group, a measure of soil permeability found in STATSGO.

Temp
Annual average temperature  ( a north - south indicator)

Precip
Annual average precipitation XE "precipitation" \i   (mostly an east - west indicator)

Dyplant
Days since planting (and therefore since last atrazine application)

Pctl
Percentile of streamflow XE "streamflow" \i  (standardizes across streams of varying size)

Atraconc
Atrazine concentration, in ug/L


Using censored parametric regression, build a multiple regression model to relate atrazine concentrations to the variables in the list above.  Determine what units are the best to be working in before settling on a final model.  Find the explanatory variables which are all significant at alpha = 0.05.
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Note that the Atrazine concentrations use format #1, negative numbers, to represent which values are censored.  If you didn’t catch this, your results could be way off.  So first create Start and End columns, the interval-censored format, so that parametric regression can be run on these data.  The End column will be the absolute value of Atraconc.  For the Start column, use the CODE command to set all values below zero to zero.  See Minitab Help for instructions on the CODE command.
With AtraStart and AtraEnd, run Regression with Life Data using the 8 other variables above as explanatory variables.  The first step is to see whether or not a transform of the Y variable (AtraConc) is needed.  Selecting normal as the assumed distribution, the probability plot appears curved.  Assuming a lognormal distribution, the plot is much more straight. The individual Wald’s tests are listed below:

Estimation Method: Maximum Likelihood

Distribution:   Lognormal

Regression Table

                        Standard                     95.0% Normal CI

Predictor        Coef      Error       Z      P       Lower       Upper

Intercept    -5.34482   0.608036   -8.79  0.000    -6.53655    -4.15309

AREA        0.0000207  0.0000089    2.31  0.021   0.0000032   0.0000382

APPLIC     -0.0188466  0.0086798   -2.17  0.030  -0.0358586  -0.0018346

CORN%       0.0410744  0.0090185    4.55  0.000   0.0233984   0.0587503

SOILGP       0.118450   0.177419    0.67  0.504   -0.229285    0.466185

TEMP         0.406063  0.0533157    7.62  0.000    0.301566    0.510560

PRECIP     -0.0029399  0.0067185   -0.44  0.662  -0.0161079   0.0102281

DYPLANT    -0.0083322  0.0005106  -16.32  0.000  -0.0093330  -0.0073314

FPCTL       0.0297316  0.0020023   14.85  0.000   0.0258071   0.0336560

Scale         1.19361  0.0441446                    1.11015     1.28334

Log-Likelihood = -656.084

The software does not account for multicollinearity, so if two variables indicate the same phenomenon (FPCTL and PRECIP?) and both are insignificant, thrown only one away at a time.  See a modern regression text for a discussion of multicollinearity.  Begin by discarding some or all of the variables that have high p-values.  I dropped SOILGP and re-ran the equation.  All were significant except PRECIP, so PRECIP was dropped from the model.  All remaining were significant, and the small change in log-likelihood indicates that PRECIP and SOILGP were adding little to the model.
Estimation Method: Maximum Likelihood

Distribution:   Lognormal

Regression Table

                        Standard                     95.0% Normal CI

Predictor        Coef      Error       Z      P       Lower       Upper

Intercept    -5.16277   0.467333  -11.05  0.000    -6.07873    -4.24682

AREA        0.0000212  0.0000089    2.37  0.018   0.0000037   0.0000386

APPLIC     -0.0179700  0.0085696   -2.10  0.036  -0.0347662  -0.0011739

CORN%       0.0389442  0.0084706    4.60  0.000   0.0223421   0.0555463

TEMP         0.397944  0.0448972    8.86  0.000    0.309947    0.485941

DYPLANT    -0.0083252  0.0005108  -16.30  0.000  -0.0093263  -0.0073241

FPCTL       0.0297769  0.0019999   14.89  0.000   0.0258571   0.0336966

Scale         1.19444  0.0441736                    1.11093     1.28424

Log-Likelihood = -656.321

Checking the reasonableness of algebraic signs for coefficients, the model states that atrazine concentrations increase as Area, CORN%, TEMP, and FPCTL increase.  These make sense – atrazine increases with larger watersheds, greater percent of corn (to which atrazine is applied), higher temperatures and higher flows.  Atrazine concentrations decrease with higher application rates and the days since planting (days since atrazine was last applied).  The sign of APPLIC is opposite of what is expected, and may indicate a multicollinearity problem.  The amount of pesticide applied is likely correlated with the area of the watershed, but dropping AREA from the model makes little difference in the sign or magnitude of the slope for APPLIC.  Threfore the second model above is considered our best (more honestly, our “least hopelessly wrong”*) model.
*
The useful phrase “least hopelessly wrong model” for describing regression models is due to Dr. Edward Gilroy.

12-2
Brumbaugh et al. (2001) measured mercury concentrations in fish of approximately the same age and trophic level across the United States.  Determine a regression equation for the dependence of mercury (“Hg”) on one or more of the possible explanatory variables listed below.  Transformation of the explanatory variables may be required.  All explanatory variables included in the model should have a p-value of 0.05 or less.  The data are found in HgFish.xls.

Name 

Description

WatMeHg
Methyl mercury concentrations in stream water


WatTotHg
Total mercury concentrations in stream water


SedMeHg
Methyl mercury concentrations in stream sediments


SedTotHg
Total mercury concentrations in stream sediments


WatDOC
Dissolved organic carbon concentrations in stream water

SedLOI
Loss of ignition (a measure of organic carbon content) in stream sediment XE "sediment" \i 

SedAVS
Sediment acid-volatile sulfides


% wetland
Percent of the basin occupied by wetlands


[image: image54]
Create a HgStart variable for use in arbitrarily-censored Regression With Life Data.  Run the regression assuming a normal distribution using all of the above variables just to see if a transformation of Hg is needed.  The probability plot looks curved, so assume a lognormal distribution instead.  That probability plot is much more straight.  This produces a regression of natural log of Hg versus the above variables:

Estimation Method: Maximum Likelihood

Distribution:   Lognormal

Regression Table

                        Standard                     95.0% Normal CI

Predictor        Coef      Error       Z      P       Lower       Upper

Intercept    -2.02553   0.138772  -14.60  0.000    -2.29752    -1.75354

WatMeHg       1.68462   0.508391    3.31  0.001    0.688191     2.68105

WatTotHg    0.0045359  0.0017345    2.62  0.009   0.0011363   0.0079356

SedMeHg      0.145786  0.0477483    3.05  0.002   0.0522011    0.239371

SedTotHg   -0.0008040  0.0002830   -2.84  0.004  -0.0013587  -0.0002494

WatDOC      0.0623404  0.0335276    1.86  0.063  -0.0033725    0.128053

SedLOI       -1.71752   0.739475   -2.32  0.020    -3.16686   -0.268173

SedAVS     -0.0002188  0.0001420   -1.54  0.123  -0.0004972   0.0000596

% wetland   0.0088329  0.0054319    1.63  0.104  -0.0018133   0.0194791

Scale        0.785347  0.0559418                   0.683012    0.903013

Log-Likelihood = -1.906

It would be helpful if there were partial plots for Regression With Life Data to determine whether or not to transform one or more X variables.  But there is no such software.  One possible approach is to use the Hg column with detection limit values in a standard regression, just to see whether partial plots indicate that transformations of the X variables are necessary.  Looking at partial plots for lnHg versus the 8 variables above, no clearly curved patterns are apparent.  No transformations are therefore warranted.  However for % wetlands the highest three values (rows 45, 47 and 48) appear as outliers.  Without them a relationship for this variable might exist.  Investigation of the values for those three points should be done before certifying the results.  However, we are several steps removed from original investigation and so do not have the ability to do so.
SedAVS was dropped from the model and the Regression With Life Data redone.  

Regression Table

                        Standard                     95.0% Normal CI

Predictor        Coef      Error       Z      P       Lower       Upper

Intercept    -2.08979   0.130531  -16.01  0.000    -2.34563    -1.83396

WatMeHg       1.80959   0.500569    3.62  0.000    0.828493     2.79069

WatTotHg    0.0044740  0.0017250    2.59  0.009   0.0010930   0.0078550

SedMeHg      0.138816  0.0468775    2.96  0.003   0.0469373    0.230694

SedTotHg   -0.0007935  0.0002811   -2.82  0.005  -0.0013445  -0.0002426

WatDOC      0.0617193  0.0330778    1.87  0.062  -0.0031119    0.126551

SedLOI       -1.81408   0.724108   -2.51  0.012    -3.23330   -0.394850

% wetland   0.0096032  0.0053870    1.78  0.075  -0.0009551   0.0201615

Scale        0.781449  0.0539523                   0.682547    0.894682

Log-Likelihood = 1.633

The p-value for % wetland decreased, perhaps indicating some multicollinearity with SedAVS. Another possibility is multicollinearity between WatDOC and % wetland (see plot below). 
[image: image55.jpg]
Given that these two variables explain similar phenomena, and % wetlands is probably cheaper to measure (from a map), drop WatDOC and rerun:
Regression Table

                        Standard                     95.0% Normal CI

Predictor        Coef      Error       Z      P       Lower       Upper

Intercept    -1.92017  0.0939110  -20.45  0.000    -2.10424    -1.73611

WatMeHg       2.08544   0.485302    4.30  0.000     1.13426     3.03661

WatTotHg    0.0042219  0.0017432    2.42  0.015   0.0008052   0.0076386

SedMeHg      0.105243  0.0438274    2.40  0.016   0.0193430    0.191143

SedTotHg   -0.0007457  0.0002837   -2.63  0.009  -0.0013018  -0.0001896

SedLOI      -0.970552   0.569256   -1.70  0.088    -2.08627    0.145168

% wetland   0.0125114  0.0052316    2.39  0.017   0.0022577   0.0227652

Scale        0.792063  0.0547102                   0.691775    0.906891

Log-Likelihood = -0.093

This is one reasonable model.  If SedLOI is considered not important, another reasonable model that assumes a normal rather than lognormal distribution is:

Estimation Method: Maximum Likelihood

Distribution:   Normal

Regression Table

                        Standard                    95.0% Normal CI

Predictor        Coef      Error      Z      P       Lower       Upper

Intercept    0.139776  0.0444506   3.14  0.002   0.0526540    0.226897

WatMeHg      0.584299   0.227573   2.57  0.010    0.138263     1.03033

WatTotHg    0.0050627  0.0008342   6.07  0.000   0.0034277   0.0066978

SedMeHg     0.0609484  0.0195707   3.11  0.002   0.0225905   0.0993064

SedTotHg   -0.0003309  0.0001359  -2.44  0.015  -0.0005972  -0.0000646

% wetland   0.0051809  0.0020841   2.49  0.013   0.0010961   0.0092656

Scale        0.381837  0.0240590                  0.337477    0.432027

Log-Likelihood = -98.416

Log likelihoods cannot be compared directly between these last two models, as the units of y differ.  Choose between them based on science, and on which have residuals plots that adhere best to the assumptions of regression.

12-3
Using the data in recon.xls collected by Mueller et al. (1997), compute a logistic regression equation for predicting the probability of observing an atrazine concentration above 1 g/L.  The variable GT_1 has a value equal to 1 for all atrazine concentrations greater than 1 g/L, and 0 otherwise.  Candidate explanatory variables are the same as those considered in Exercise 12-1. 

[image: image56]
For logistic regression, no assumed distribution is necessary.  Regression for the same 8 possible explanatory variables as in Exercise 12.1 results in:
Logistic Regression Table

                                                 Odds     95% CI

Predictor        Coef    SE Coef      Z      P  Ratio  Lower  Upper

Constant     -9.03598    1.93932  -4.66  0.000

AREA        0.0000190  0.0000266   0.71  0.476   1.00   1.00   1.00

APPLIC     -0.0297202  0.0241452  -1.23  0.218   0.97   0.93   1.02

CORN%       0.0752189  0.0264176   2.85  0.004   1.08   1.02   1.14

SOILGP       0.559289   0.524803   1.07  0.287   1.75   0.63   4.89

TEMP         0.580756   0.159493   3.64  0.000   1.79   1.31   2.44

PRECIP      0.0018051  0.0189484   0.10  0.924   1.00   0.97   1.04

DYPLANT    -0.0175953  0.0020476  -8.59  0.000   0.98   0.98   0.99

FPCTL       0.0371431  0.0062763   5.92  0.000   1.04   1.03   1.05

Log-Likelihood = -115.777

Test that all slopes are zero: G = 326.442, DF = 8, P-Value = 0.000

The overall test of whether this model is better than no model at all, the test that all slopes are zero, has a p-value of 0.000.  We conclude that there is information in this model for predicting atrazine occurrence above 1, and proceed to try and find the best (least hopelessly wrong*) model.  AREA and APPLIC both have p-values above 0.05, but since they are likely related, only one is discarded at a time.  SOILGP is insignificant, as is PRECIP.  To start, I dropped AREA and SOILGP, hoping that the negative slope for APPLIC would reverse.  It did not.  Next I dropped PRECIP.  The coefficient and p-value for APPLIC remained nearly the same.  Finally, I dropped APPLIC.  The resulting 4-variable model
Logistic Regression Table

                                                 Odds     95% CI

Predictor        Coef    SE Coef      Z      P  Ratio  Lower  Upper

Constant     -6.53330    1.18121  -5.53  0.000

CORN%       0.0481420  0.0186160   2.59  0.010   1.05   1.01   1.09

TEMP         0.506535   0.102252   4.95  0.000   1.66   1.36   2.03

DYPLANT    -0.0174382  0.0020292  -8.59  0.000   0.98   0.98   0.99

FPCTL       0.0358572  0.0061900   5.79  0.000   1.04   1.02   1.05

Log-Likelihood = -117.321

Test that all slopes are zero: G = 323.354, DF = 4, P-Value = 0.000

has slopes with algebraic signs that make scientific sense, and all are significant at alpha = 0.05.  The model can be compared to the original 8 variable model, in which it is nested, using equation 12.13 for partial tests.  Here the difference between models is more than one variable, so the degrees of freedom for the chi-square test of difference in -2 log likelihoods equals the difference in the number of explanatory variables used, here 4.  The test determines whether the additional 4 variables add significantly to the explanatory power of the model, just as in multiple linear regression.  The null hypothesis is that they do not; so rejecting the null hypothesis says to prefer the more complex (8 variable) model.  Not rejecting the null hypothesis says to prefer the simpler (4 variable) model.
G2 nested = 2 [ 117.321 – 115.777 ]  =  3.088, which when compared to a chi-square distribution with 4 degrees of freedom results in a p-value = 0.54.  Therefore do not reject the null hypothesis that the 4 additional variables are worthless.  Use the 4 variable model.

_1158565440.unknown

_1159271446.unknown

_1159271642.unknown

_1158656667.unknown

_1158656819.unknown

_1158656576.unknown

_992072148.unknown

_1014793792.unknown

_1014794191.unknown

_1014794207.unknown

_1014794152.unknown

_992073076.unknown

_991919777.unknown

_991926194.unknown

