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1.  Start RStudio 
Open RStudio. 
a) Set the working directory to one in which you will save any worksheets or output.  In 
RStudio you can easily do this using RStudio's pull-down menu: 
Session > Set working directory > Choose directory 
 
b) Load the packages needed.  Install 15 packages: 
bestglm car  cenGAM EnvStats fitdistrplus Kendall 
mgcv     multcomp  NADA  nlme  perm   
rms  survminer   vegan  NADA2 
and then check the boxes next to those package names in the packages tab in your lower 
right window.  This loads those packages and any other packages that are required by 
them. 

 
 
2.  Loading R Format Databases From Packages 
Packages have datasets contained within them. When you load the packages you have 
access to those datasets.  You can type  data() to list all datasets available within the R 
base packages and in the packages you've loaded.  Once you know the names of the 
datasets you want to load, use the data (datasetname) command to load the dataset and 
then attach to it. 
> data(Golden) 
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> attach(Golden) 
Click on its name in the Environment tab to see it in the upper left window, or use the 
View command: 
. > View(Golden) 
 
3.  Loading External Datasets of Various Formats 
I won't use external datasets in this tutorial, but here is a description of how to load data 
of several formats from external files.  This assumes the files are in your working 
directory. 
 
a) Read in an R format (.rda) file.  
In the Environment tab, click the open folder icon.  Go to the directory where the data are 
located and choose the file name.  After loading it, attach to it 
 
b)  Read in an excel format worksheet 
In the environment tab, click on the Import Data button.  Choose the “From Excel” 
option.  Go to the folder where the data file is located and choose the file name.  If there 
are variable names stored as column names, make sure the box next to  First Row as 
Names  is checked, and click Import.   
 
c) Read in a .csv format data file 
In the environment tab, click on the Import Data button.  Choose the “From Text 
(base)…”  option.  Go to the folder containing the file and choose the file name.  Make 
sure the Heading button YES is selected if the first row in the dataset are the variable 
names (text).  Change the na.strings entry to whatever in the dataset represents a missing 
value (often a blank in Excel).  Click the Import button. 
 
d)  Read in a .txt text format data file. 
In the environment tab, click on the Import Data button.  Choose the “From Text 
(base)…”  option.  Go to the folder containing the data file and choose the file name.  
Make sure the Heading button YES is selected if the first row in the dataset are the 
variable names (text).  If necessary, change the na.strings entry to whatever in the dataset 
represents a missing value (often a blank in Excel).  Click the Import button. 
 
4.  Plotting Censored Data 
a)   Boxplots:    Data:  Zinc dataset 
> data (CuZn)   # from the NADA package 
> attach (CuZn) 
> cboxplot (Zn, ZnCen, Zone, minmax = TRUE) 
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> cboxplot (Zn, ZnCen, Zone, LOG = TRUE) 

 
Note	that	without	the	minmax	option,	outlier	observations	such	as	the	one	in	the	
Alluvial	Fan	data,	are	shown	individually.	
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> cboxplot (Zn, ZnCen, Zone, LOG = TRUE, show = TRUE, minmax = TRUE) 

 
The show=TRUE option models the portion of each group's data below the highest 
detection limit (the lines in gray) using ROS. 
 
b) Scatterplots   Data:  TCE concentrations in ground water 
> data(TCEReg)      # in the NADA package 
> attach (TCEReg) 
> cenxyplot (PopDensity, 1-PopAbv1, TCEConc, TCECen) 

 
> cenxyplot (PopDensity, 1-PopAbv1, TCEConc, TCECen, xlab= "Population 
Density", ylab = "TCE Concentration, in ug/L") 
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> cenxyplot (PopDensity, 1-PopAbv1, TCEConc, TCECen, xlab= "Population 
Density", ylab = "TCE Concentration, in ug/L", main = "Your Title Here", log = 
"y") 

 
 
c) Cumulative distribution functions (CDFs)     Data:  Zinc, ShePyrene 
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> cen_ecdf (Zn, ZnCen)     # Zn already loaded in the CuZn dataset 

 
 
> cen_ecdf (Zn, ZnCen, Zone, Ylab = “Zinc concentration, in ug/L”) 

 
> data(ShePyrene)     # Not needed if previously loaded above 
> attach(ShePyrene) 
> cenCompareCdfs (Pyrene, PyreneCen) 
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> cenCompareCdfs (Pyrene, PyreneCen, dist3 = "weibull") 

 
d) Probability (Q-Q) Plots:  Pyrene data 
 
> cenQQ (Pyrene, PyreneCen)
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> cenCompareQQ (Pyrene, PyreneCen) 
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5.  Estimating Descriptive Statistics 
 
Exploring the data 
In R, the summary command is used to briefly describe the characteristics of the data.  In 
the NADA for R package, the censummary command fulfills the same role for censored 
data: 
> censummary(Pyrene, PyreneCen) 
 
all: 
         n      n.cen    pct.cen        min        max  
  56.00000   11.00000   19.64286   28.00000 2982.00000  
 
limits: 
  limit n uncen   pexceed 
1    28 1     3 0.9636368 
2    35 2     3 0.8545470 
3    58 1    10 0.7818206 
4    86 1    11 0.5636411 
5   117 1     2 0.3350722 
6   122 1     5 0.2947735 
7   163 3     1 0.1968254 
8   174 1    10 0.1785714 
 
There are 11 nondetects located at 8 different detection limits.  The probabilities of being 
less than or equal to the detection limit value is (1-pexceed), one minus the exceedance 
probability.  So the limit at a concentration of 28 is at the (1-0.964), or the 3.6th percentile 
of the data.  And (1-0.179) or 82.1% of the observations are below the highest detection 
limit of 174. 
 
I’ll demonstrate how to compute MLE, K-M and ROS statistics using both the NADA 
and EnvStats packages. 
 
Maximum Likelihood Estimation (MLE)   
The cenmle command in the NADA package assumes by default that data follow a 
lognormal distribution.  Other distributions may be specified as options.  We will use the 
lognormal because it was the best-fitting distribution, as seen in the Plotting Data 
exercise.  I’ve stored the result into an object (Pyr.mle.nada, below) and by typing the 
object name you get the output.   
 
> Pyr.mle.nada <- cenmle (Pyrene, PyreneCen) 
> Pyr.mle.nada 
        n     n.cen    median      mean        sd  
 56.00000  11.00000  91.64813 133.91419 142.66984 
 
The EnvStats package provides different commands for each distribution chosen.  As 
with the plots, “lnorm” indicates a lognormal distribution, “norm” a normal distribution, 
and “gamma” a gamma distribution.  These come after the “e” in the command name.  
The “Alt” in the command tells EnvStats to report back the lognormal results not in log 
units, but transformed back into original units.  The output is much more detailed than in 
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the NADA package.  I’ve included options for computing two-sided confidence intervals 
on the mean, which we’ll discuss in the next section of the course. 
 
> Pyr.mle <- elnormAltCensored(Pyrene, PyreneCen, ci=TRUE, ci.method = 
"bootstrap", n.bootstraps = 5000) 
> print(Pyr.mle) 
 
Results of Distribution Parameter Estimation 
Based on Type I Censored Data 
-------------------------------------------- 
Assumed Distribution:            Lognormal 
 
Censoring Side:                  left 
 
Censoring Level(s):               28  35  58  86 117 122 163 174  
 
Estimated Parameter(s):          mean = 133.914189 
                                 cv   =   1.065383 
 
Estimation Method:               MLE 
 
Data:                            Pyrene 
 
Censoring Variable:              PyreneCen 
 
Sample Size:                     56 
 
Percent Censored:                19.64286% 
 
Confidence Interval for:         mean 
 
Confidence Interval Method:      Bootstrap 
 
Number of Bootstraps:            5000 
 
Number of Bootstrap Samples 
With No Censored Values:         0 
 
Number of Times Bootstrap 
Repeated Because Too Few 
Uncensored Observations:         0 
 
Confidence Interval Type:        two-sided 
 
Confidence Level:                95% 
 
Confidence Interval:             Pct.LCL = 100.1207 
                                 Pct.UCL = 189.0668 
                                 BCa.LCL =  98.3675 
                                 BCa.UCL = 184.7112 
 
Using the print statement after storing the output in an object (Pyr.mle was used here) 
produces the table type output shown above.  Without the print statement, just typing the 
object  name,  the output is generic and not ready to be pasted into a results document. 
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Kaplan-Meier   
The cenfit function in the NADA package has a slightly incorrect detail in its 
computation of the mean.  Here it is, but remember that this issue generally makes the 
computed mean slightly too high. 
> pyr.km.nada <- cenfit(Pyrene, PyreneCen) 
> pyr.km.nada 
       n    n.cen   median     mean       sd  
 56.0000  11.0000  98.0000 164.2036 393.9509 
 
You should use the EnvStats command enparCensored instead for Kaplan-Meier, until 
this issue in the NADA package is corrected.   The EnvStats command uses “npar” for 
nonparametric to produce the Kaplan-Meier estimates.   
 
> pyr.km <- enparCensored(Pyrene,PyreneCen, ci=TRUE, ci.method="bootstrap", 
n.bootstraps = 5000) 
> print(pyr.km) 
 
Results of Distribution Parameter Estimation 
Based on Type I Censored Data 
-------------------------------------------- 
 
Assumed Distribution:            None 
 
Censoring Side:                  left 
 
Censoring Level(s):               28  35  58  86 117 122 163 174  
 
Estimated Parameter(s):          mean    = 164.09450 
                                 sd      = 389.41379 
                                 se.mean =  49.75292 
 
Estimation Method:               Kaplan-Meier 
 
Data:                            Pyrene 
 
Censoring Variable:              PyreneCen 
 
Sample Size:                     56 
 
Percent Censored:                19.64286% 
 
Confidence Interval for:         mean 
 
Assumed Sample Size:             56 
 
Confidence Interval Method:      Bootstrap 
 
Number of Bootstraps:            5000 
 
Number of Bootstrap Samples 
With No Censored Values:         0 
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Number of Times Bootstrap Repeated Because Too Few Uncensored Observations: 0 
Confidence Interval Type:        two-sided 
Confidence Level:                95% 
 
Confidence Interval:             Pct.LCL = 100.10254 
                                 Pct.UCL = 264.47772 
                                 BCa.LCL =  98.68195 
                                 BCa.UCL = 261.92596 
                                 t.LCL   = 102.72979 
                                 t.UCL   = 611.25019 
Note that as with all bootstrap estimates the confidence intervals above will differ slightly 
from your results. 
 
Regression on Order Statistics (ROS)  
The cenros command in the NADA package constructs ROS models. The default model 
fits the data to a lognormal distribution.  A Q-Q plot is drawn by the plot command using 
the ROS model. The cenros function will not take data with embedded NA values – 
manually delete them first or use the elnormAltCensored command as in the next section. 
> Pyr.ROS.nada <- cenros(Pyrene, PyreneCen) 
> mean(Pyr.ROS.nada) 
[1] 163.2494 
> sd(Pyr.ROS.nada) 
[1] 393.1068 
> quantile(Pyr.ROS.nada) 
       5%       10%       25%       50%       75%       90%       95%  
 30.78771  33.00000  63.45761  90.50000 132.25000 255.50000 312.75000 
> plot(Pyr.ROS.nada) 

 
Figure	9		Lognormal	probability	plot	of	pyrene	data	
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The EnvStats command is again elnormAltCensored, but here with the “rROS” option to 
compute ROS.  In that case the lognormal assumption is only for the nondetect data.  It 
also produces confidence intervals for the ROS mean by bootstrapping, making it very 
useful. 
 
> Pyr.ROS <- elnormAltCensored(Pyrene, PyreneCen, method = "rROS", ci = TRUE, 
ci.method = "bootstrap", n.bootstraps = 5000) 
> print(Pyr.ROS) 
 
Results of Distribution Parameter Estimation 
Based on Type I Censored Data 
-------------------------------------------- 
 
Assumed Distribution:            Lognormal 
 
Censoring Side:                  left 
 
Censoring Level(s):               28  35  58  86 117 122 163 174  
 
Estimated Parameter(s):          mean = 163.371129 
                                 cv   =   2.406266 
 
Estimation Method:               Imputation with                                 
Q-Q Regression (rROS) 
 
Data:                            Pyrene 
 
Censoring Variable:              PyreneCen 
 
Sample Size:                     56 
 
Percent Censored:                19.64286% 
 
Confidence Interval for:         mean 
 
Confidence Interval Method:      Bootstrap 
 
Number of Bootstraps:            5000 
 
Number of Bootstrap Samples 
With No Censored Values:         0 
 
Number of Times Bootstrap 
Repeated Because Too Few 
Uncensored Observations:         0 
 
Confidence Interval Type:        two-sided 
 
Confidence Level:                95% 
 
Confidence Interval:             Pct.LCL = 100.94089 
                                 Pct.UCL = 264.69006 
                                 BCa.LCL =  97.22056 
                                 BCa.UCL = 255.91613 
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All at once 
Descriptive stats for all three methods, again for the default lognormal distribution, can 
quickly be produced using the censtats command of the NADA package: Unfortunately 
this NADA package command also cannot currently incorporate NA values, so remove 
them prior to running the command. 
 
> censtats(Pyrene, PyreneCen) 
 
       n    n.cen  pct.cen 
56.00000 11.00000 19.64286 
 
      median     mean       sd 
K-M 98.00000 164.2036 393.9509 
ROS 90.50000 163.2494 393.1068 
MLE 91.64813 133.9142 142.6698 
 
K-M and ROS use the high outlier data value to estimate the mean.  MLE uses the 
lognormal model, whose value at that percentile is lower and therefore the MLE estimate 
of the mean for this dataset is lower. And again, the K-M mean computed in this NADA 
package function is slightly biased high. 
 
 
6. Interval Estimates 
Several of the commands to obtain confidence intervals are identical to what we did in 
the Estimating Descriptive Statistics exercise.  Prediction and tolerance intervals are new. 
 
Confidence Intervals 
 
Kaplan-Meier 
A confidence interval around the KM mean is computed using the enparCensored 
command.  Since K-M is a nonparametric method, the bootstrap method for computing a 
CI is recommended, as it too requires no assumed distribution.  Note that the default CI 
method is a t-interval, which requires that the distribution of possible estimates of the 
mean is a normal distribution in order for this confidence interval to be valid.  When the 
sample size is around 70+ this may be a reasonable assumption.  For this example it is 
not.  Bootstrap intervals work fine with large and smaller data, say 20 observations and 
above.  First the bootstrap: 
 
> pyr.km <- enparCensored(Pyrene,PyreneCen, ci=TRUE, ci.method="bootstrap", 
n.bootstraps = 5000) 
> print(pyr.km) 
 
Results of Distribution Parameter Estimation 
Based on Type I Censored Data 
-------------------------------------------- 
Assumed Distribution:            None 
Censoring Side:                  left 
Censoring Level(s):               28  35  58  86 117 122 163 174  
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Estimated Parameter(s):          mean    = 164.09450 
                                 sd      = 389.41379 
                                 se.mean =  49.75292 
 
Estimation Method:               Kaplan-Meier 
Data:                            Pyrene 
Censoring Variable:              PyreneCen 
Sample Size:                     56 
Percent Censored:                19.64286% 
 
Confidence Interval for:         mean 
Assumed Sample Size:             56 
Confidence Interval Method:      Bootstrap 
Number of Bootstraps:            5000 
 
Number of Bootstrap Samples 
With No Censored Values:         0 
Number of Times Bootstrap 
Repeated Because Too Few 
Uncensored Observations:         0 
 
Confidence Interval Type:        two-sided 
Confidence Level:                95% 
Confidence Interval:             Pct.LCL =  99.91121 
                                 Pct.UCL = 264.31983 
                                 BCa.LCL =  98.32382 
                                 BCa.UCL = 258.84840 
                                 t.LCL   = 102.80532 
                                 t.UCL   = 612.79366 
 
Then the default normal assumption (basically, a t-interval using the K-M estimates of 
mean and standard deviation): 
 
> enparCensored(Pyrene,PyreneCen, ci=TRUE)  
 
Results of Distribution Parameter Estimation 
Based on Type I Censored Data 
-------------------------------------------- 
Assumed Distribution:            None 
Censoring Side:                  left 
Censoring Level(s):               28  35  58  86 117 122 163 174  
 
Estimated Parameter(s):          mean    = 164.09450 
                                 sd      = 389.41379 
                                 se.mean =  49.75292 
Estimation Method:               Kaplan-Meier 
Data:                            Pyrene 
Censoring Variable:              PyreneCen 
Sample Size:                     56 
Percent Censored:                19.64286% 
 
Confidence Interval for:         mean 
Confidence Interval Method:      Normal Approximation 
Confidence Interval Type:        two-sided 
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Confidence Level:                95% 
 
Confidence Interval:             LCL =  66.58057 
                                 UCL = 261.60844 
 
This t-interval (Normal Approximation) LCL goes down considerably lower (66.5) than 
the BCa bootstrap interval (98.3) because the t-interval must be symmetric, and the upper 
end is approx. 100 ug/L above the mean, so the LCL must be 100 below the mean.  The 
data don't warrant that low of an interval as they are asymmetric, and the bootstrap LCL 
picks up on that information. 
 
MLE   
Computing the mean of an cenmle object also gives its confidence interval: 
> pymle = cenmle(Pyrene, PyreneCen, conf.int=0.95) 
> mean(pymle) 
     mean        se   0.95LCL   0.95UCL  
133.91419  19.06506 102.51010 174.93895 
 
These assume the default lognormal distribution.  Change the conf.int= value to get an 
interval with something other than the default 0.95 confidence coefficient.  To get the 
more typical normal distribution interval, use the dist="gaussian" option. 
> pymlenorm=cenmle(Pyrene, PyreneCen, dist="gaussian") 
> mean(pymlenorm) 
     mean        se   0.95LCL   0.95UCL  
163.09649  52.14325  60.89759 265.29538 
 
A better method for computing confidence intervals and bounds for skewed data would 
be bootstrapping.  This is the option we used in the Descriptive Statistics exercise above. 
For the lognormal MLE method: 
> pyr.lnorm <- elnormAltCensored(Pyrene, PyreneCen, ci=TRUE, ci.method = 
"bootstrap", n.bootstraps = 5000) 
? print(pyr.lnorm) 
 
Results of Distribution Parameter Estimation 
Based on Type I Censored Data 
-------------------------------------------- 
 
Assumed Distribution:            Lognormal 
 
Censoring Side:                  left 
 
Censoring Level(s):               28  35  58  86 117 122 163 174  
 
Estimated Parameter(s):          mean = 133.914189 
                                 cv   =   1.065383 
 
Estimation Method:               MLE 
 
Data:                            Pyrene 
 
Censoring Variable:              PyreneCen 
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Sample Size:                     56 
 
Percent Censored:                19.64286% 
 
Confidence Interval for:         mean 
 
Confidence Interval Method:      Bootstrap 
 
Number of Bootstraps:            5000 
 
Number of Bootstrap Samples 
With No Censored Values:         0 
 
Number of Times Bootstrap 
Repeated Because Too Few 
Uncensored Observations:         0 
 
Confidence Interval Type:        two-sided 
 
Confidence Level:                95% 
 
Confidence Interval:             Pct.LCL = 100.1207 
                                 Pct.UCL = 189.0668 
                                 BCa.LCL =  98.3675 
                                 BCa.UCL = 184.7112 
 
 
ROS   
The cenros command in NADA does not compute confidence intervals for the mean.   
Use the EnvStats command elnormAltCensored as done previously in the Descriptive 
Statistics exercise to bootstrap a confidence interval for the ROS method. 
 
> Pyr.ROS <- elnormAltCensored(Pyrene,PyreneCen, method="rROS", ci = TRUE, 
ci.method="bootstrap", n.bootstraps = 5000) 
> print(Pyr.ROS) 
 
Results of Distribution Parameter Estimation 
Based on Type I Censored Data 
-------------------------------------------- 
 
Assumed Distribution:            Lognormal 
Censoring Side:                  left 
Censoring Level(s):               28  35  58  86 117 122 163 174  
 
Estimated Parameter(s):          mean = 163.371129 
                                 cv   =   2.406266 
 
Estimation Method:               Imputation with Q-Q Regression (rROS) 
Data:                            Pyrene 
Censoring Variable:              PyreneCen 
Sample Size:                     56 
Percent Censored:                19.64286% 
 
Confidence Interval for:         mean 
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Confidence Interval Method:      Bootstrap 
Number of Bootstraps:            5000 
 
Number of Bootstrap Samples 
With No Censored Values:         0 
Number of Times Bootstrap 
Repeated Because Too Few 
Uncensored Observations:         0 
Confidence Interval Type:        two-sided 
Confidence Level:                95% 
Confidence Interval:             Pct.LCL =  99.77337 
                                 Pct.UCL = 262.12133 
                                 BCa.LCL =  97.92872 
                                 BCa.UCL = 258.51025 
 
Generally, I recommend using a bootstrap estimate when there is sufficient data, which 
there are here, as theoretical methods such as Cox are strongly dependent on the 
lognormal shape that often does not fit exactly.  Remember, ROS assumes a distribution 
but only for the censored observations. 
 
Prediction Intervals 
 
Intervals	for	computing	the	range	of	probable	values	for	new	observations	when	the	
data	distribution	has	not	changed	can	be	quickly	performed	using	MLE	for	three	
assumed	distributions	using	the	cenPredInt	command:	
 

> cenPredInt (Pyrene, PyreneCen) 

95% Prediction Limits 
  Distribution      95% LPL  95% UPL 
1    Lognormal   15.7540607 533.1565 
2        Gamma    0.7231388 581.0615 
3       Normal -783.7555461 992.1820 
 
The	default	intervals	here	are	for	1	new	observation.		That	can	be	changed	with	the	
newobs	=	option.		See	the	pdf	for	NADA2	on	the	CRAN	site.	You	can	ignore	the	
warnings	about	NAs	in	the	dataset,	they	are	deleted	prior	to	computing	the	
intervals,	just	as	you	would	by	hand	if	necessary.	
	
The	same	function	can	be	used	to	compute	PIs	using	ROS,	here	for	2	new	
observations,	which	will	make	them	wider	than	the	intervals	for	1	new	observation	
above:	
> cenPredInt (Pyrene, PyreneCen, newobs =2, method = "rROS") 
 
95% Prediction Limits 

  Distribution      95% LPL   95% UPL 

1    Lognormal   13.0468382  667.8651 

2        Gamma    0.1274249  692.7938 

3       Normal -817.2081679 1093.6174	
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The	normal	distribution	is	this	example	is	not	a	good	fit,	as	shown	by	the	negative	
value	of	the	lower	95%	prediction	intervals	when	assuming	a	normal	distribution.. 
 
Tolerance Intervals 
	
Intervals	for	computing	an	upper	bound	on	the	true	X%	percentile,	to	state	that	we	
are	95%	confident	that	no	more	than	(1-X%)	of	data	will	exceed	it,	are	computed	
using	MLE	by:	
(Here	for	the	90th	percentile	–	no	more	than	10%	exceedances).	
	
To	compute	a	tolerance	interval	for	three	distributions,	plus	a	graph	showing	BIC	
stats	to	determine	which	is	best	(lowest	BIC	is	best),	use	the	cenTolInt	function	in	
the	NADA2	package:	
 

> cenTolInt(Pyrene, PyreneCen, cover=0.9) 

  Distribution 90th Pctl  95% UTL      BIC Method 

1    Lognormal  279.7995 376.4538 563.1224    mle 

2        Gamma  340.2525 440.4870 591.4928    mle 

3       Normal  667.0507 816.6821 737.2320    mle        
 
What’s	inside	this	function?		If	you	would	like	info	on	the	commands	this	function	
uses,	its	below.		If	that’s	not	your	thing,	just	use	the	function!	
Here’s	how	you	would	get	the	lognormal	tolerance	interval:	
	
> print(eqlnormCensored (Pyrene, PyreneCen, p=0.9, ci=TRUE, ci.type = 

"upper")) 

Results of Distribution Parameter Estimation 

Based on Type I Censored Data 

-------------------------------------------- 

Assumed Distribution:            Lognormal 

Censoring Side:                  left 

Censoring Level(s):               28  35  58  86 117 122 163 174  

Estimated Parameter(s):          meanlog = 4.5179565 

                                 sdlog   = 0.8709106 

Estimation Method:               MLE 

Estimated Quantile(s):           90'th %ile = 279.7995 

Quantile Estimation Method:      Quantile(s) Based on 

                                 MLE Estimators 

Data:                            Pyrene 

Censoring Variable:              PyreneCen 
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Sample Size:                     56 

Percent Censored:                19.64286% 

Confidence Interval for:         90'th %ile 

Assumed Sample Size:             56 

Confidence Interval Method:      Exact for 

                                 Complete Data 

Confidence Interval Type:        upper 

Confidence Level:                95% 

Confidence Interval:             LCL =   0.0000 

                                 UCL = 376.4538 
 
Here’s	how	you	would	compute	a	gamma	tolerance	interval	by	first	taking	cube	
roots,	then	using	those	in	a	censored	normal	routine	to	get	a	tolerance	interval	on	a	
percentile,	then	retransforming	back	to	the	original	data	scale	by	cubeing	the	result:	
	
> dat.gamma <- Pyrene^(1/3) 
> obj.gamma <- eqnormCensored (dat.gamma, PyreneCen, p=0.9, ci=TRUE, ci.type = 
"upper") 
> pct.gamma <- obj.gamma$quantiles^3  # the 90th percentile in orig units 
> ti.gamma <- (obj.gamma$interval$limits[2])^3  # the upper tol limit in orig 
units 
> pct.gamma 
90'th %ile  
  340.2525  
> ti.gamma 
    UCL  
440.487 
 
This agrees with the output of the cenTolInt command used above, where the results for a 
gamma distribution are printed. 
 
 
7. Matched Pair Tests and Comparing Data to Standards 
a.	Compare	Data	to	a	Standard	Using	a	Matched	Pair	Test	
Example	1.		Use	the	cen_paired	function	to	determine	if	arsenic	concentrations	in	
groundwater	exceed	the	drinking	water	standard	of	10	ug/L	standard	for	the	
Example1.txt	dataset.	(the	fitdistrplus	package	is	required)	
> data(Example1)     #   from the NADA2 package 
> attach(Example1) 
> head(Example1) 
  Arsenic NDis1 NDisTRUE 
1 4.00000     1     TRUE 
2 4.20000     0    FALSE 
3 0.61606     0    FALSE 
4 5.27628     0    FALSE 
5 3.00000     1     TRUE 
6 0.82952     0    FALSE 
> cen_paired(Arsenic, NDisTRUE, 10, alt = "greater") 
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 Censored paired test for mean(Arsenic) equals 10  
 alternative hypothesis: true mean Arsenic exceeds 10.  
  
 n = 21   Z= -20.4157   p-value = 1  
 Mean Arsenic = 2.252 
 
The	mean	arsenic	concentration	does	not	exceed	10	ug/L.	
	
b.		Test	for	Differences	in	Two	Paired	Columns	of	Data	
Example	2.		Test	whether	atrazine	concentrations	were	the	same	in	June	versus	
September	groundwaters	on	the	same	dates	in	a	variety	of	wells	(rows	–	paired	
data).		Test	both	for	differences	in	the	mean	as	well	as	differences	in	the	cdfs	and	the	
medians	--	use	all	three	of	the	paired	data	functions	mentioned	in	the	lecture.	
> data(Atra)      # in the NADA package 
> attach(Atra) 
> head(Atra) 
  June JuneCen Sept SeptCen 
1 0.38   FALSE 2.66   FALSE 
2 0.04   FALSE 0.63   FALSE 
3 0.01    TRUE 0.59   FALSE 
4 0.03   FALSE 0.05   FALSE 
5 0.03   FALSE 0.84   FALSE 
6 0.05   FALSE 0.58   FALSE 
# test for difference in means.  Two-sided test based on description of 
exercise. 
> cen_paired(June, JuneCen, Sept, SeptCen) 
 
 Censored paired test for mean(June - Sept) equals 0.  
 alternative hypothesis: true mean difference does not equal 0.  
  
 n = 24   Z= -1.0924   p-value = 0.2747  
 Mean difference = -3.927 
 
The	p-value	is	well	above	0.05.		Do	not	reject	that	the	mean	difference	in	
concentration	for	the	two	months	could	be	0.	
	
# test for the median difference = 0 using the sign test. 
> cen_signtest(June, JuneCen, Sept, SeptCen) 
Censored sign test for median(x:June - y:Sept) equals 0  
   alternative hypothesis: true median difference is not = 0  
   n = 24   n+ = 3   n- = 16    ties: 5  
  
  No correction for ties:   p-value = 0.004425  
Fong correction for ties:   p-value = 0.08956 
	
Because	it	is	important	to	correct	for	the	numbers	of	tied	values	within	a	pair,	the	p-
value	of	0.089	results	in	the	conclusion	to	not	reject	that	the	median	difference	in	
concentration	between	the	two	months	could	be	0.	
	
# test for a difference in the cdfs of the two months using the signed-rank 
test. 
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> cen_signedranktest(June, JuneCen, Sept, SeptCen) 
Censored signed-rank test for x:June - y:Sept equals 0 
alternative hypothesis: true difference June - Sept does not equal 0 
  
 Pratt correction for ties  
 n = 24   Z= -3.319   p-value = 0.0009033 
 
The	signed-rank	test	has	more	power	to	see	differences	than	did	the	sign	test.		It	
also	is	comparing	the	cdfs,	the	entire	set	of	percentiles,	between	the	two	months.		It	
finds	a	difference	because	the	upper	end	of	the	distribution	is	quite	a	bit	higher	in	
the	Sept	data.	
	
c.		Comparing	Data	to	Standards	Using	an	Upper	Confidence	Limit	
Using the Example 1 data, compute the UCL95 for censored data.  
Step numbers refer to the 'Flowchart for Computation of UCL/EPC for data with 
Nondetects' – see Appendix. 
 
Step 1.  Sample size.  There are 21 observations.  Since it is on the borderline for 
deciding whether to use a distributional or nonparametric method, both will be 
demonstrated here. 
 
Step 2.  Distributional Method 
2a)  Draw the boxplot  for "censored data" (data with nondetects). 
> cboxplot(Arsenic, NDisTRUE, Ylab="Arsenic Conc", show = TRUE) 

 
Note that the highest detection limit is drawn as the horizontal dashed line at 4 ug/L.  
Everything below that includes values estimated using a lognormal ROS.  Three 
"outliers" (not 'bad data') lie above the estimated whisker, showing that the data are 
skewed. 

1
2

3
4

5

Ar
se

ni
c 

C
on

c

Max DL=4



NADA2 Tutorial  
 

24 

 
2b) Decide which of three distributions best fits the data using the cenCompareCdfs 
command. Choose the distribution with the smallest BIC. 
 
> cenCompareCdfs (Arsenic, NDisTRUE, Yname = "Arsenic concentration in ug/L") 

 
The gamma distribution has the smallest BIC. 
 
Note that the curve representing the normal distribution dips below zero (x=0) at about 
the 10th percentile.  A distribution of concentrations with 10% negative numbers is not 
realistic, which results in a higher BIC statistic.   
 
2c) Use the best-fit distribution (gamma) from 2b to compute the UCL95. 
> egam <- egammaAltCensored(Arsenic, NDisTRUE, ci=TRUE, ci.type = "upper", 
ci.method = "normal.approx") 
> print(egam) 
 
Results of Distribution Parameter Estimation 
Based on Type I Censored Data 
-------------------------------------------- 
Assumed Distribution:            Gamma 
Censoring Side:                  left 
Censoring Level(s):              0.5 2.0 3.0 4.0  
Estimated Parameter(s):          mean = 1.8399269 
                                 cv   = 0.9131572 
Estimation Method:               MLE 
Data:                            Arsenic 
Censoring Variable:              NDisTRUE 
Sample Size:                     21 
Percent Censored:                66.66667% 
Confidence Interval for:         mean 
Confidence Interval Method:      Normal Approximation 
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Confidence Interval Type:        upper 
Confidence Level:                95% 
Confidence Interval:             LCL =     -Inf 
                                 UCL = 2.575537 
 
Use the print statement to get the “table format” for the output from this EnvStats 
function. The UCL95 equals 2.57 assuming a gamma distribution.  Because this is lower 
than the 10 ug/L standard, the null hypothesis of non-compliance is rejected, and the site 
from which these data came is found to be in compliance. 
 
 
3.  Nonparametric Method 
3a) There are multiple detection limits for this arsenic data.  Compute the Kaplan-
Meier estimate of the mean and percentile bootstrap UCL95, the latter because of the 
high percent of nondetects (66.67%) in the data.  
> arsenic.out <- enparCensored(Arsenic, NDisTRUE, ci=TRUE, 
ci.method="bootstrap", ci.type="upper", n.bootstraps=5000) 
> print (arsenic.out) 
 
Results of Distribution Parameter Estimation 
Based on Type I Censored Data 
-------------------------------------------- 
Assumed Distribution:            None 
Censoring Side:                  left 
Censoring Level(s):              0.5 2.0 3.0 4.0  
Estimated Parameter(s):          mean    = 1.7169702 
                                 sd      = 1.5928374 
                                 se.mean = 0.1159666 
Estimation Method:               Kaplan-Meier 
Data:                            Arsenic 
Censoring Variable:              NDisTRUE 
Sample Size:                     21 
Percent Censored:                66.66667% 
Confidence Interval for:         mean 
Assumed Sample Size:             21 
Confidence Interval Method:      Bootstrap 
Number of Bootstraps:            5000 
Number of Bootstrap Samples 
With No Censored Values:         0 
Number of Times Bootstrap 
Repeated Because Too Few 
Uncensored Observations:         13 
 
Confidence Interval Type:        upper 
Confidence Level:                95% 
Confidence Interval:             Pct.LCL = 0.000000 
                                 Pct.UCL = 2.520048 
                                 BCa.LCL = 0.000000 
                                 BCa.UCL = 2.487498 



NADA2 Tutorial  
 

26 

                                 t.LCL   = 0.000000 
                                 t.UCL   = 3.829391 
 
The percentile bootstrap estimate of the UCL95 equals 2.52.  This is essentially the same 
estimate as that for the gamma distribution, with the identical result – the site is found to 
be in compliance. 
 
Example 2:  Computation of a UCL95 for data with both detected and non-detected 
values, DL unknown. 
 
Data:  Methyl Isobutyl Ketone (MIBK) in air above a medium-sized US city.  Read in the 
data from Example2.txt.  There are 30 observations so a nonparametric method will be 
used. 
> attach(Example2) 
 
A.  Computation of the mean and UCL95 
The MIBK concentrations are given as reported in column 1 -- no detection limit was 
provided.  Nondetects were designated only as ND.   The lowest detected value in the 
data equals 0.1229.  Assuming all ND values are lower than this, all NDs were changed 
to <0.1229 as shown in the MIBK and MIBKcen columns.   
 
This results in only one reporting limit in the data, so the Kaplan-Meier estimate will be 
biased a bit high.  Instead, use the robust ROS method with bootstrapping: 
> mibk.ucl95 <- elnormAltCensored (MIBK, MIBKcen, method = "rROS", ci=TRUE, 
ci.method = "bootstrap", ci.type = "upper", n.bootstraps = 5000) 
? print(mibk.ucl95) 
 
Results of Distribution Parameter Estimation 
Based on Type I Censored Data 
-------------------------------------------- 
Assumed Distribution:            Lognormal 
Censoring Side:                  left 
Censoring Level(s):              0.1229  
 
Estimated Parameter(s):          mean = 0.2160198 
                                 cv   = 0.9338747 
 
Estimation Method:               Imputation with 
                                 Q-Q Regression (rROS) 
Data:                            MIBK 
Censoring Variable:              MIBKcen 
Sample Size:                     31 
Percent Censored:                48.3871% 
Confidence Interval for:         mean 
Confidence Interval Method:      Bootstrap 
Number of Bootstraps:            5000 
Number of Bootstrap Samples 
With No Censored Values:         0 
Number of Times Bootstrap 
Repeated Because Too Few 
Uncensored Observations:         0 
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Confidence Interval Type:        upper 
Confidence Level:                95% 
Confidence Interval:             Pct.LCL = 0.0000000 
                                 Pct.UCL = 0.2900981 
                                 BCa.LCL = 0.0000000 
                                 BCa.UCL = 0.2672667 
 
The percentile bootstrap UCL95 based on the robust ROS mean equals 0.290 (the 
Kaplan-Meier estimate with the slight bias would have equaled 0.293). Remember that 
your bootstrap result will slightly differ from the one here.  To decrease differences 
between runs, increase the number of bootstraps, say to 10,000. 
 
B.  What if the detection limit had been known? 
If a reporting limit of 0.029 had been provided by the laboratory, the data would be as 
given in the MIBK2 and MIBK2cen columns.  Using the same procedure gives slightly 
lower results for both mean and UCL95: 
 
> mibk2.out <- elnormAltCensored (MIBK2, MIBK2cen, method = "rROS", ci=TRUE, 
ci.method = "bootstrap", ci.type = "upper", n.bootstraps = 5000) 
> print(mibk2.out) 
 
Results of Distribution Parameter Estimation 
Based on Type I Censored Data 
-------------------------------------------- 
Assumed Distribution:            Lognormal 
Censoring Side:                  left 
Censoring Level(s):              0.029  
 
Estimated Parameter(s):          mean = 0.2146941 
                                 cv   = 0.9436391 
 
Estimation Method:               Imputation with 
                                 Q-Q Regression (rROS) 
Data:                            MIBK2 
Censoring Variable:              MIBK2cen 
Sample Size:                     31 
Percent Censored:                48.3871% 
Confidence Interval for:         mean 
Confidence Interval Method:      Bootstrap 
Number of Bootstraps:            5000 
Number of Bootstrap Samples 
With No Censored Values:         0 
Number of Times Bootstrap 
Repeated Because Too Few 
Uncensored Observations:         0 
 
Confidence Interval Type:        upper 
Confidence Level:                95% 
Confidence Interval:             Pct.LCL = 0.0000000 
                                 Pct.UCL = 0.2843498 
                                 BCa.LCL = 0.0000000 
                                 BCa.UCL = 0.2757997 
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The percentile bootstrap UCL95 using rROS equals 0.284 with this known detection 
limit.  It is always better to use the laboratory documented limit, but not having one 
should not stop the user from computing estimates using the lowest detected observation 
as the limit. 
 
 
Example 3.  Computation of the expected percent of observations exceeding a health 
advisory when all data are NDs.  More details of this method are found in Chapter 8 of 
Statistics for Censored Environmental Data Using Minitab and R (Helsel, 2012). 
 
Read in the 14 observations in Example3 that are all nondetects.   
> detach (Example 1) 
> data (Example 3) 
Detaching	from	a	previous	dataset	and	attaching	to	a	new	one	avoids	confusing	
which	dataset	these	column	names	should	refer	to.	
> attach(Example3) 
 
All detection limits used are below the 10 ppb drinking water MCL for arsenic.  
Therefore we know that 0 out of 14 current observations exceed the MCL of 10 ppb.  
What is the range of percent of observations in the aquifer that might exceed the MCL 
(with 95% probability)?  Use the binomial test command, entering the number of 
observations in the dataset that exceed the MCL (0) and the number of total observations 
(14).  The ‘alternative =”less”’ option states that this is a one-sided confidence interval – 
we are looking only for possible exceedances, nothing on the low end. 
> binom.test(0, 14, alternative="less") 
 
Results of Hypothesis Test 
-------------------------- 
Null Hypothesis:                 probability of success = 0.5 
Alternative Hypothesis:          True probability of success is < 0.5 
Test Name:                       Exact binomial test 
Estimated Parameter(s):          probability of success = 0 
Data:                            0 and 14 
Test Statistic:                  number of successes = 0 
Test Statistic Parameter:        number of trials = 14 
P-value:                         6.103516e-05 
95% Confidence Interval:         LCL = 0.0000000 
                                 UCL = 0.1926362 

Most of what is returned concerns a test for whether the proportion of observations above 
the MCL differs from 50%, but this test is of no interest here.  What is of interest is the 
confidence interval on the proportion of observations in the population that could be 
above the MCL, based on the 14 samples observed.  The UCL95 of the proportion equals 
0.192.  Therefore we can say with 95% probability that there are no more than 19.2% of 
concentrations in the aquifer exceeding the MCL – we expect that there are fewer 
because the MCL of 10 is considerably above the highest detection limit of 4 ppb, and 
this interval is actually the probability of exceeding 4 ppb.  Taking this conservative 
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approach that the probability of values falling above 4 ppb is the same probability of 
falling above 10 ppb, the expected percent of samples at this location above the MCL of 
10 ppb is no more than 19.2%.  This range could be tightened by taking more samples, of 
course.  For other questions that can be answered when all values are nondetects, see 
Chapter 8 in Helsel (2012). 
 
 
8. Two-Group Tests 
 
a1.  The MLE version of a "t-test" for censored data uses an MLE regression with one X 
variable, a 0/1 group indicator.  Assuming a normal distribution: 
> cen2means (Zn,ZnCen,Zone, LOG = FALSE)    
  MLE 't-test' of mean CensData: Zn   by Factor: Zone  
     Assuming normal distribution of residuals around group means  
     mean of Alluvial Fan = 11.49     mean of Basin Trough = 18.13  
     Chisq = 0.2928  on 1 degrees of freedom     p = 0.588  
Warning message: 
In cen2means(Zn, ZnCen, Zone, LOG = FALSE) : 
  NOTE: Data with nondetects may be projected below 0 with MLE normal 
distribution. If so, p-values will be unreliable (often too small).  Use perm 
test instead. 
 
No difference between group means can be seen.  But do the residuals follow a normal 
distribution, as required?  The corresponding Q-Q plot of regression residuals and 
corresponding Shapiro-Francia test show that the data do not follow a normal 
distribution: 

 
MLE	also	builds	a	model	of	the	two	groups	after	estimating	their	mean	and	standard	
deviations.	When	assuming	a	normal	distribution	with	data	close	to	zero	it	is	easy	
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for	the	model	to	project	data	down	below	zero.		Besides	being	unrealistic,	this	can	
lead	to	a	false	separation	between	the	groups	and	p-values	that	are	too	low.		To	
avoid	this,	either	assume	a	lognormal	distribution	(the	default,	or	use	LOG=TRUE)	
or	use	a	permutation	test	instead.	
	
a2.		Use	the	cenperm2	function	to	perform	a	two-group	permutation	test.		This	
avoids	an	assumption	of	a	normal	distribution	while	testing	for	differences	in	
means:	
> cenperm2 (Zn,ZnCen,Zone)    
Permutation test of mean CensData: Zn   by Factor: Zone  
     9999 Permutations     alternative = two.sided  
mean of Alluvial Fan = 21.22 to 23.51    mean of Basin Trough = 21.28 to 21.94  
Mean (Alluvial Fan - Basin Trough) = -0.05612 to 1.567   p = 0.9998 to 0.9981 
	
The	two	groups	do	not	have	significantly	different	means.		These	are	p-values	that	
you	can	believe,	as	they	do	not	depend	on	the	normal	assumption	and	do	not	project	
data	values	below	zero.	
	
a3.		Assume	a	lognormal	distribution	(uses	the	default	LOG=TRUE	option).	This	
tests	for	differences	in	geometric	means: 
> cen2means (Zn,ZnCen,Zone)   
 
    MLE 't-test' of mean natural logs of CensData: Zn by Factor: Zone  
     Assuming lognormal distribution of residuals around group 
geometric means 
geometric mean of Alluvial Fan = 11.78     geometric mean of Basin 
Trough = 15.24  
     Chisq = 2.547  on 1 degrees of freedom     p = 0.11 
 
No significant difference between geometric means.  And the corresponding Q-Q plot of 
regression residuals show that the data do not follow a lognormal distribution either (one 
large outlier), but it is the better fit of the two distributions.  A permutation test using 
cenperm2 after computing the logarithms would be a better test for differences in 
geometric means. 
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c.  The Peto-Peto test is run using the cen1way function. It reports the Kaplan-Meier 
medians in each of the groups: 
> cen1way (Zn,ZnCen,Zone) 
            grp    N   PctND   KMmean    KMsd   KMmedian 
1   Alluvial Fan   67   23.88    22.70   74.03         10 
2   Basin Trough   50    8.00    21.61   18.77         20 
 
      Oneway Peto-Peto test of CensData: Zn   by Factor: Zone  
      Chisq = 5.183   on 1 degrees of freedom     p = 0.0228 
 
The two group medians (10 vs 17) are found different at p = 0.0228, without assuming 
normality or substituting anything for the nondetects censored at multiple (in this case, 
two) reporting limits.  The cdfs for the two groups are also shown, drawn using the 
cen_ecdf function. 
> cen_ecdf (Zn, ZnCen, Zone, Ylab = "Zinc concentration, in ug/L") 
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Above approximately the 40th percentile or so, the Basin Trough (dashed line) data are 
higher than (to the right of) the Alluvial Fan data.  Boxplots might show the group 
differences better than do the cdfs, especially for non-statisticians. 
 
> cboxplot(Zn, ZnCen, Zone) 
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Now for the two simpler tests, where all values below the highest DL must be re-
censored. 
 
d.  Contingency Tables 
Contingency tables are a test to determine whether the proportions of data in categories 
are the same in two or more groups.  With nondetects the cutoff level is again the highest 
reporting limit.  Use the TCE2.RData dataset with the highest of 4 DLs at 5 ug/L.  The 
test determines whether the proportions of data above versus below the cutoff are the 
same in each group.  It differs from a rank-sum in that all data above the limit are simply 
in the same ‘Above’ group rather than ranked individually. This loses some information 
as compared to the rank-sum test.  Density is a text variable (a factor) representing the 
groups, while Below5Cens has a 1 for data below 5 ug/L and a 0 for data at or below 5.  
First we combine them into a matrix using the ftable command, then compute a  
‘cross-tabulation’ with the xtabs command that the chisq.test command expects.  Finally 
the chisquare test is computed.  Its null hypothesis is that there is no difference in the 
percent of data above the cutoff of 5 ug/L in the two groups. 
 
> data(TCE2.RData)    # in the NADA2 package 
> attach(TCE2)  
> ftable(Density~Below5Cens) 
           Density High Medium 
Below5Cens                     
0                    18     12   >=5 
1                    74    118    <5 
 
> tab= xtabs(~Below5Cens+Density) 
> chisq.test(tab) 
 
Pearson's Chi-squared test with Yates' continuity correction 
data:  tab 
X-squared = 4.0785, df = 1, p-value = 0.04343 
 
The contingency table finds a difference in the proportions.  It is less powerful than the 
rank-sum test (which will also find a difference) when there are data that can be ranked 
above the highest reporting limit. 
	
e.  The nonparametric Wilcoxon rank-sum test can be calculated using the wilcox.test 
command.  First you must have or create a column that contains the concentrations for all 
detected values at the maxDL and above, plus a single number (I use -1) below the max 
DL for all values below the maxDL.  I computed this with the following line: 
 
> TCE2$Below5[Below5Cens== 1] <- -1      # all <5s are now a -1 
> attach (TCE2) 
> wilcox.test (Below5~Density) 
Wilcoxon rank sum test with continuity correction 
data:  Below5 by Density 
W = 6599.5, p-value = 0.02713 
alternative hypothesis: true location shift is not equal to 0 
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The two-sided p-value is significant at 0.027.  The smaller p-value than the contingency 
table test reflects the additional information in the individual values at and above 5 that 
the rank-sum tests uses.  The slightly smaller p-value for the Peto-Peto test shows that it 
is the most appropriate test when there are multiple detection limits. 
 
Is re-censoring at the highest DL and running the rank-sum test really better than the 
typical method of running a t-test on data with one-half DL subbed for nondetects?   
Lets see: 
 
> t.test (Half.DL~Density)   # t-test on 1/2 DL. now NEVER do this again! 
 
 Welch Two Sample t-test 
 
data:  Half.DL by Density 
t = -0.065623, df = 201.88, p-value = 0.9477 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 -8.073324  7.553257 
sample estimates: 
  mean in group High mean in group Medium  
            7.763043             8.023077 
 
No significant difference found.  The arbitrariness of the substitution process, not to 
mention that this puts the same number in many times, and so likely decreases the 
standard deviation artificially, should get you to quickly use a nonparametric test instead. 
 
	
 
9. Three or more groups 
 
The Golden.rda data present lead concentrations in organs of herons after exposing them 
to lead.  There are four dosage groups (“Dosage” or “Group” columns), zero plus three 
amounts of lead.  The objective was to determine if feathers or another non-destructive 
part of the birds could be used as an environmental indicator, so it would not be 
necessary to sacrifice a bird in order to measure their lead concentrations.  A censored 
boxplot of the Golden liver lead data shows that the third and fourth groups have 
generally higher values. 
> data(Golden) 
> attach(Golden) 
> cboxplot(Liver, LiverCen, Dosage, Ylab = "Lead concentrations in liver, in 
ppb") 
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The skewness of the 0.05 group and the outlier of the 0.25 group indicates that logs 
should end up being the better set of units to use. 
 
Kruskal-Wallis test 
First the groups can be compared using a Kruskal-Wallis test, setting all values below the 
highest detection limit of 0.04 as tied.  Note that there are detected observations below 
0.04, so either the data had a second and lower detection limit with no nondetects below 
it, or more likely were reported using “insider censoring” (see Statistics for Censored 
Environmental Data Using Minitab and R to find out what that is and the problem it 
causes). 
   
Step 1 - Create a variable -- call it Below04 -- with zeros (or -1, or any value below the 
highest DL) for all data below the highest DL of 0.04.  Be careful not just to assign all 
0.04s as nondetects, as some of these could be detected 0.04s.  Instead, use two steps, the 
first to set all values BELOW 0.04 as a 0 (or -1), and the second to set all data marked as 
nondetects (which will include the <0.04 values) as a 0 (or -1).  The result is a variable 
with an indicator (-1 recommended) for all data below the highest reporting limit, and 
original values for all detected data at and above the highest reporting limit.  The logical 
operators < (less-than) and == (equal to) are used here. 
> Below04 <- Liver 
> Below04[Liver<0.04] <- -1 
> Below04[LiverCen==TRUE] <- -1 
 
Step 2 - run the Kruskal-Wallis test 
> kruskal.test(Below04 ~ Dosage) 
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        Kruskal-Wallis rank sum test 
data:  Below04 by Dosage  
Kruskal-Wallis chi-squared = 7.8565, df = 3, p-value = 0.04907 
 
The result shows that there is a difference (p = 0.049) between group medians using this 
simple nonparametric test.  An ANOVA on data after substituting one-half DL will not 
find a difference (trust me on this). 
 
Peto-Peto test 
The nonparametric Peto-Peto test, the multi-DL nonparametric test, is computed using 
the cen1way command: 
> cen1way (Liver, LiverCen, Dosage) 
     grp   N   PctND    KMmean       KMsd   KMmedian 
1      0   7   28.57    0.1020    0.08834    0.09893 
2   0.01   7   28.57    0.1384    0.10590     0.1748 
3   0.05   6    0.00   12.1100   16.16000      3.639 
4   0.25   7    0.00    6.8660   17.46000     0.2615 
 
      Oneway Peto-Peto test of CensData: Liver   by Factor: Dosage  
      Chisq = 7.795   on 3 degrees of freedom     p = 0.0504  
 
 Pairwise comparisons using Peto & Peto test  
 
data:  CensData and Factor  
 
     0     0.01  0.05  
0.01 0.887 -     -     
0.05 0.171 0.321 -     
0.25 0.079 0.127 0.887 
 
P value adjustment method: BH  
 
Warning messages: 
1: One or more group(s) do not have censored data.  
2: One or more group(s) do not have censored data. 
 
The cdfs show that the higher two groups appear to differ in their percentiles as compared 
to the lower two groups.  
> cen_ecdf (Liver, LiverCen, Dosage) 
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This is more easily seen by plotting the empirical cdfs in log units:  
> lnLiver <- log(Liver) 
> cen_ecdf (lnLiver, LiverCen, Dosage, xlim = c(min(lnLiver), max(lnLiver)), 
Ylab = "Natural Logs of Lead Concentrations in Liver") 

 
The 0.05 and 0.025 groups appear to have the higher liver lead concentrations (are further 
to the right) than the other two groups.  
 
The MLE "ANOVA" 
For the parametric approach, use the cenanova command to run a censored regression 
with the groups as ‘factor’ explanatory variables.  By default, cenanova assumes the 
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residuals follow a lognormal distribution, so use the associated Q-Q plot to see if the 
residuals in log units appear approximately like a normal distribution. 
 
> cenanova(Liver, LiverCen, Dosage) 
 
      MLE test of mean natural logs of CensData: Liver by Factor: Dosage  
      Assuming lognormal distribution of CensData  
      Chisq = 10.67  on 3 degrees of freedom     p = 0.0137  
  
      mean(0)   mean(0.01)   mean(0.05)   mean(0.25) 
    -2.989004    -2.701335    0.3031636   -0.7304445 
 
  Simultaneous Tests for General Linear Hypotheses 
 
Multiple Comparisons of Means: Tukey Contrasts 
 
 
Fit: survreg(formula = logCensData ~ Factor, dist = "gaussian") 
 
Linear Hypotheses: 
                 Estimate Std. Error z value Pr(>|z|)   
0.01 - 0 == 0      0.2877     1.0841   0.265   0.9935   
0.05 - 0 == 0      3.2922     1.1036   2.983   0.0151 * 
0.25 - 0 == 0      2.2586     1.0625   2.126   0.1449   
0.05 - 0.01 == 0   3.0045     1.1010   2.729   0.0324 * 
0.25 - 0.01 == 0   1.9709     1.0599   1.860   0.2457   
0.25 - 0.05 == 0  -1.0336     1.0749  -0.962   0.7712   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
(Adjusted p values reported -- single-step method) 
 
The overall test has a p-value of 0.014.  Therefore the four group mean logarithms 
(geometric means) differ.  p-values for the individual pairwise tests of differences show 
differences in two pairs of groups.  The p-values of 0.0150 (0.05 versus 0 groups) and 
0.0323 (0.05 versus 0.01 groups) show that the 0.05 group differs from the lowest two 
groups, but not from the 0.25 group.  The residuals plot shows that log are a very good 
set of units to use, as their residuals are close to a normal distribution: 
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If instead you had wanted to test differences in the arithmetic means, use a permutation 
test as a normal distribution will not fit these data very well. 
 
> cenpermanova(Liver, LiverCen, Dosage) 
Permutation test of mean CensData: Liver   by Factor: Dosage  
     9999 Permutations  
Test Statistic = 1211 to 1211       p = 0.1421 to 0.1443  
  
   mean(0)   mean(0.01)   mean(0.05)   mean(0.25)    
    0.1000       0.1395      12.1100       6.8660    
 
No significant difference in the means was found.  This test did not assume a normal 
distribution, though it is still influenced by outliers because it evaluates means, which are 
influenced by outliers.  The permutation test will not extrapolate data to values below 
zero as would MLE.     
 
Note that the means of two groups, and so much of the data in the two groups, falls below 
zero when estimated by MLE assuming a normal distribution: 
> cenanova(Liver, LiverCen, Dosage, LOG=FALSE) 
 
      MLE test of mean CensData: Liver   by Factor: Dosage  
      Assuming normal distribution of CensData  
      Chisq = 6.889  on 3 degrees of freedom     p = 0.0755  
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   NOTE: Data with nondetects may be projected below 0 with MLE normal 
distribution. If so, p-values will be unreliable (often too small).  Use perm 
test instead.  
  
      mean(0)   mean(0.01)   mean(0.05)   mean(0.25) 
    -2.889326    -2.847255     12.11417     6.865988 
 
The p-value of 0.0755 is too small because the group differences are exaggerated by 
pushing data down below 0.  Given that the actual data cannot go below zero, the 
cenpermanova p-value of 0.14 is a much more realistic test result. 
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10.  Correlation and Regression 
 
data (Recon)   # in the NADA package 
> attach(Recon) 

 
First test for high vifs by computing a standard regression equation that ignores the 
censoring indicator column, ignoring all results except for the vifs: 
> vif (lm (AtraConc ~ Area + Applic + PctCorn + SoilGp + Temp + Precip + 
Dyplant + Pctl)) 
    Area   Applic  PctCorn   SoilGp     Temp   Precip  Dyplant     Pctl  
1.101992 2.739602 1.996707 1.480307 2.587299 2.206457 1.068839 1.131753 

 
All of the variables appear uncorrelated with the others (all VIFs well below 10).  
Therefore the p-values obtained in regression should be reliable.   
 
Step 1. Create the 8-X variable dataframe and run the regression with all variables.  
Decide which scale the Y variable should be used (no transformation, log, cube-root). 
 
> recon.8 <- data.frame (Area, Applic, PctCorn, SoilGp, Temp, Precip, Dyplant, 
Pctl) 
> reg.recon.8 <- cencorreg(AtraConc, AtraCen, recon.8) 
 
 Likelihood R2 = 0.6387                     AIC = 804.4707  
 Rescaled Likelihood R2 = 0.6771            BIC = 843.968  
 McFaddens R2 = 0.3547 
  
> summary(reg.recon.8) 
Call: 
survreg(formula = "log(AtraConc)", data = 
"Area+Applic+PctCorn+SoilGp+Temp+Precip+Dyplant+Pctl",  
    dist = "gaussian") 
                Value Std. Error      z       p 
(Intercept) -8.76e+00   1.25e+00  -7.00 2.6e-12 
Area         2.19e-05   1.98e-05   1.11  0.2685 
Applic      -2.75e-02   1.73e-02  -1.59  0.1127 
PctCorn      5.91e-02   1.88e-02   3.14  0.0017 
SoilGp       2.35e-01   3.66e-01   0.64  0.5198 
Temp         6.25e-01   1.15e-01   5.44 5.3e-08 
Precip      -5.18e-03   1.39e-02  -0.37  0.7087 
Dyplant     -1.86e-02   1.51e-03 -12.36 < 2e-16 
Pctl         4.17e-02   4.45e-03   9.36 < 2e-16 
Log(scale)   5.96e-01   6.12e-02   9.75 < 2e-16 
 
Scale= 1.82  
 
Gaussian distribution 
Loglik(model)= -391.7   Loglik(intercept only)= -607.1 
 Chisq= 430.68 on 8 degrees of freedom, p= 5.1e-88  
Number of Newton-Raphson Iterations: 6  
n= 423 
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The Rescaled likelihood R is fairly high (0.82) and the AIC equals 804.4. The Q-Q plot 
(below) shows a fairly straight pattern of data and W = 0.966, so it would be difficult to 
find a better transformation  of the Y variable than the log.  Use log Y. 

 
 
Step 2.  Decide whether to transform the scale of each X variable. 
Run the partplots procedure to see whether curvature in the Y-X relationship means that a 
transformation of the X variable should be taken.   
 
> partplots(AtraConc, AtraCen, recon.8) 
 
PctCorn  
 untransformed  
 Likelihood R2 = 0.6387                     AIC = 804.4707  
cube root  
 Likelihood R2 = 0.641                     AIC = 801.7987  
log transform  
 Likelihood R2 = 0.6423                     AIC = 800.281  
Decrease in AIC from transformation of PctCorn = 4.189691  
 
Only PctCorn showed an appreciable drop in AIC with a transformation. As a percentage 
it is bounded by 0 and 100 so it’s a little odd to do a transform.  However the partial plot 
shows an increase in the percent of "filled circle" detected observations and so a general 
increase in atrazine with increasing PctCorn.  The relationship may be nonlinear so I'll 
take the cube root of PctCorn. 
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> Recon$cbrtPctCorn <- PctCorn^(1/3) 
> recon.8onecube <- cbind(recon.8[, -3], Recon$cbrtPctCorn) 
>  reg.recon.8onecube <- cencorreg(AtraConc, AtraCen, recon.8onecube) 
 Likelihood R2 = 0.641                     AIC = 801.7987  
 Rescaled Likelihood R2 = 0.6795            BIC = 841.296  
 McFaddens R2 = 0.3569 
 
> partplots(AtraConc, AtraCen, recon.8onecube) 
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[image not provided]   No other variables indicate a further transformation is necessary 
after running partplots -- the cbrtPctCorn variable is already transformed so taking the log 
or cube root of the cube root would not make much sense. 
 
Step 3a.  Can we lower the AIC by dropping unimportant variables? 
 
> summary(reg.recon.8onecube) 
Call: 
survreg(formula = "log(AtraConc)", data = 
"Area+Applic+cbrtPctCorn+SoilGp+Temp+Precip+Dyplant+Pctl",  
    dist = "gaussian") 
                Value Std. Error      z       p 
(Intercept) -1.07e+01   1.58e+00  -6.74 1.6e-11 
Area         2.04e-05   1.97e-05   1.03 0.30074 
Applic      -2.61e-02   1.62e-02  -1.61 0.10795 
cbrtPctCorn  1.23e+00   3.50e-01   3.51 0.00046 
SoilGp       2.69e-01   3.62e-01   0.74 0.45644 
Temp         6.41e-01   1.15e-01   5.57 2.6e-08 
Precip      -9.65e-03   1.41e-02  -0.68 0.49348 
Dyplant     -1.86e-02   1.50e-03 -12.44 < 2e-16 
Pctl         4.16e-02   4.42e-03   9.40 < 2e-16 
Log(scale)   5.89e-01   6.12e-02   9.64 < 2e-16 
 
Both Precip and Soil Gp are very non-significant.  Soil Group was a number looked up in 
a book at the county scale and so wasn’t really expected to provide much information 
(your insight as a scientist is needed when using regression).  Delete either Precip or Soil 
Group and run the 7-variable model. 

 
 

> recon.7 <- data.frame (Area, Applic, cbrtPctCorn, Temp, Precip, Dyplant, 
Pctl) 
> reg.recon.7 <- cencorreg(AtraConc, AtraCen, recon.7) 
 Likelihood R2 = 0.6405                     AIC = 800.3545  
 Rescaled Likelihood R2 = 0.679            BIC = 835.8021  
 McFaddens R2 = 0.3565  
  
> summary(reg.recon.7) 
Call: 
survreg(formula = "log(AtraConc)", data = 
"Area+Applic+cbrtPctCorn+Temp+Precip+Dyplant+Pctl",  
    dist = "gaussian") 
                Value Std. Error      z       p 
(Intercept) -1.01e+01   1.36e+00  -7.42 1.2e-13 
Area         2.26e-05   1.95e-05   1.16 0.24676 
Applic      -2.37e-02   1.59e-02  -1.49 0.13569 
cbrtPctCorn  1.13e+00   3.27e-01   3.47 0.00051 
Temp         6.32e-01   1.14e-01   5.54 3.0e-08 
Precip      -4.73e-03   1.24e-02  -0.38 0.70246 
Dyplant     -1.86e-02   1.49e-03 -12.44 < 2e-16 
Pctl         4.18e-02   4.42e-03   9.45 < 2e-16 
Log(scale)   5.90e-01   6.12e-02   9.65 < 2e-16 
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AIC has decreased so this is better than the 8-variable model.  The residuals plot looks 
much the same -- this is expected in regression.  The normality of residuals is primarily 
determined by the scale of the Y variable.  Going to a six-variable model is an easy 
choice: Precip has a high p-value.   
 
> recon.6 <- data.frame (Area, Applic, cbrtPctCorn, Temp, Dyplant, Pctl) 
> reg.recon.6 <- cencorreg(AtraConc, AtraCen, recon.6) 
 Likelihood R2 = 0.6404                     AIC = 798.5004  
 Rescaled Likelihood R2 = 0.6789            BIC = 829.8982  
 McFaddens R2 = 0.3563  
  
> summary(reg.recon.6) 
 
Call: 
survreg(formula = "log(AtraConc)", data = 
"Area+Applic+cbrtPctCorn+Temp+Dyplant+Pctl",  
    dist = "gaussian") 
                Value Std. Error      z       p 
(Intercept) -1.02e+01   1.35e+00  -7.55 4.3e-14 
Area         2.27e-05   1.95e-05   1.16 0.24482 
Applic      -2.35e-02   1.59e-02  -1.48 0.13925 
cbrtPctCorn  1.11e+00   3.19e-01   3.48 0.00051 
Temp         6.06e-01   9.03e-02   6.71 2.0e-11 
Dyplant     -1.86e-02   1.49e-03 -12.45 < 2e-16 
Pctl         4.17e-02   4.41e-03   9.45 < 2e-16 
Log(scale)   5.90e-01   6.12e-02   9.65 < 2e-16 
 
AIC has decreased by 1.5.  The next variable with a high p-value is Area.  The order of 
deleting these 3 variables likely wouldn't matter and you'd get to this 5 variable model 
even if you dropped them in a different order. 
 
> recon.5 <- data.frame (Applic, cbrtPctCorn, Temp, Dyplant, Pctl) 
> reg.recon.5 <- cencorreg(AtraConc, AtraCen, recon.5) 
 Likelihood R2 = 0.6393                     AIC = 797.8078  
 Rescaled Likelihood R2 = 0.6777            BIC = 825.1559  
 McFaddens R2 = 0.3553  
  
> summary(reg.recon.5) 
 
Call: 
survreg(formula = "log(AtraConc)", data = 
"Applic+cbrtPctCorn+Temp+Dyplant+Pctl",  
    dist = "gaussian") 
               Value Std. Error      z       p 
(Intercept) -9.85413    1.31831  -7.47 7.7e-14 
Applic      -0.02454    0.01594  -1.54 0.12368 
cbrtPctCorn  1.10879    0.32018   3.46 0.00053 
Temp         0.58724    0.08900   6.60 4.2e-11 
Dyplant     -0.01862    0.00150 -12.45 < 2e-16 
Pctl         0.04155    0.00442   9.40 < 2e-16 
Log(scale)   0.59339    0.06116   9.70 < 2e-16 
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AIC has decreased by 0.7, so this is a very slightly better model.  The only other 
insignificant variable is Applic, the application amounts of ag chemicals.  These are 
known only on a county level so are estimated by cutting and pasting county boundaries 
with watershed boundaries.  They also are voluntary amounts, and may not always 
provide accurate information to the Federal government.  But probably the main evidence 
against the variable is its negative slope – we would expect more atrazine to wash off 
with more applications.  So we drop this variable to see its effect. 
 
> recon.4 <- data.frame (cbrtPctCorn, Temp, Dyplant, Pctl) 
> reg.recon.4 <- cencorreg(AtraConc, AtraCen, recon.4) 
 Likelihood R2 = 0.6373                     AIC = 798.192  
 Rescaled Likelihood R2 = 0.6756            BIC = 821.4904  
 McFaddens R2 = 0.3533  
  
> summary(reg.recon.4) 
 
Call: 
survreg(formula = "log(AtraConc)", data = "cbrtPctCorn+Temp+Dyplant+Pctl",  
    dist = "gaussian") 
               Value Std. Error      z       p 
(Intercept) -8.79657    1.10700  -7.95 1.9e-15 
cbrtPctCorn  0.81989    0.25697   3.19  0.0014 
Temp         0.51042    0.07332   6.96 3.4e-12 
Dyplant     -0.01869    0.00150 -12.47 < 2e-16 
Pctl         0.04050    0.00437   9.26 < 2e-16 
Log(scale)   0.59752    0.06121   9.76 < 2e-16 
 
The AIC goes up but only a little.  This would be the scientist’s choice to use either the 5-
variable or the 4-variable model.  I usually choose the larger model if all p-values are 
under 0.10 because AIC and similar metrics are known to choose too few variables.  Here 
however the Applic p-value in the 5-varable model is 0.124 and so I'd drop it, choosing 
the 4-variable model.  What is also behind my decision to drop Applic is that it is a crude 
measure of amount of pesticide applied (county level data cut and pasted) and 
cbrtPctCorn essentially measures the same thing.  Use your knowledge of the data to 
make your decision. 
 
Step 3b.  Use the bestaic function to lower the AIC? 
Starting with the full 8 variables, though PctCorn has been transformed to become 
cbrtPctCorn, run the bestaic function to see what models the computer selects: 
 
> bestaic(AtraConc, AtraCen, recon.8onecube) 
Evaluating 255 models and printing the 10 lowest AIC models  
 n.xvars                                      model.xvars       aic 
   5                 Applic Temp Dyplant Pctl cbrtPctCorn  797.8078 
   4                        Temp Dyplant Pctl cbrtPctCorn  798.1920 
   6            Area Applic Temp Dyplant Pctl cbrtPctCorn  798.5004 
   5                   Area Temp Dyplant Pctl cbrtPctCorn  798.6990 
   6          Applic SoilGp Temp Dyplant Pctl cbrtPctCorn  799.4286 
   6          Applic Temp Precip Dyplant Pctl cbrtPctCorn  799.6515 
   5                 SoilGp Temp Dyplant Pctl cbrtPctCorn  800.0487 
   5                 Temp Precip Dyplant Pctl cbrtPctCorn  800.0798 
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   7     Area Applic SoilGp Temp Dyplant Pctl cbrtPctCorn  800.2693 
   7     Area Applic Temp Precip Dyplant Pctl cbrtPctCorn  800.3545 
 
Many models are very similar in AIC, but the 'best' is the 5-variable model that we named 
recon.5, above.  Second best was the four variable model we called recon.4.  So by 
deleting sequentially we did get to the "best" models, but this is a lot quicker. As you see 
in the list there are several other models around an AIC of 798, and if it were less 
expensive to use the variables in one of these, it would be an excellent substitute for the 
mathematically lowest AIC model. For example the fourth model down uses Area instead 
of Applic, with all other variables the same.  If Applic were expensive to collect, this 
model has an AIC only 0.9 units higher. 
 
Finding the best one-variable model.  To find the best 1-variable model (just to 
compare to the ATS equation), run the four possible 1-variable models using the 
variables from the 4-variable model.  
 
> reg.recon.cbrtPctCorn <- cencorreg(AtraConc, AtraCen, cbrtPctCorn) 
 Likelihood R = 0.1282                     AIC = 1214.138  
 Rescaled Likelihood R = 0.132             BIC = 1225.288  
 McFaddens R = 0.07598 
  
> reg.recon.Temp <- cencorreg(AtraConc, AtraCen, Temp) 
 Likelihood R = 0.2952                     AIC = 1182.583  
 Rescaled Likelihood R = 0.3039            BIC = 1193.733  
 McFaddens R = 0.1782  
  
> reg.recon.Dyplant <- cencorreg(AtraConc, AtraCen, Dyplant) 
 Likelihood R = -0.6899                     AIC = 947.8357  
 Rescaled Likelihood R = -0.7103            BIC = 958.9849  
 McFaddens R = -0.4745  
  
> reg.recon.Pctl <- cencorreg(AtraConc, AtraCen, Pctl) 
 Likelihood R = 0.5878                     AIC = 1041.861  
 Rescaled Likelihood R = 0.6052            BIC = 1053.011  
 McFaddens R = 0.3843 
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The Dyplant (days since planting) variable has the lowest AIC.  Its residuals plot (above) 
shows a linear pattern pulled away from the normal theory line because of six high 
outliers.  The negative slope is reasonable:  as there are more days since planting of corn, 
and atrazine is only applied before planting, the more time it sits on the ground the lower 
the amounts available to be washed off into the stream.  The outliers are probably high 
flows that would be accounted for by the Pctl variable if it were in the model.  Here are 
the details for the Dyplant 1-variable model: 
 
> summary(reg.recon.Dyplant) 
 
Call: 
survreg(formula = "log(AtraConc)", data = "Dyplant", dist = "gaussian") 
               Value Std. Error      z       p 
(Intercept)  1.34758    0.22401   6.02 1.8e-09 
Dyplant     -0.03063    0.00229 -13.40 < 2e-16 
Log(scale)   0.96971    0.06270  15.47 < 2e-16 
 
Scale= 2.64  
 
Gaussian distribution 
Loglik(model)= -470.4   Loglik(intercept only)= -607.1 
 Chisq= 273.31 on 1 degrees of freedom, p= 2.2e-61  
Number of Newton-Raphson Iterations: 6  
n= 423 

 
 
The Nonparametric ATS line: 
Using Dyplant as the X variable,  
> ATS (AtraConc, AtraCen, Dyplant) 
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Akritas-Theil-Sen line for censored data  
ln(AtraConc) = 3.3637 -0.0364 * Dyplant  
Kendall's tau = -0.3995   p-value = 0  

 
Seeing this transformed back into the original units will look much better. 
 
> ATS (AtraConc, AtraCen, Dyplant, retrans = TRUE) 
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For this dataset, the maximum likelihood and ATS slopes for Dyplant are very similar 
(different by 0.006).  The intercepts are similar as well when you realize that a difference 
of 2.0 is small when concentrations go up to 100. 
 
The plot of the relationship of atrazine to flow percentile (Pctl) shows a clear washoff 
effect at higher flows: 
 
> ATS (AtraConc, AtraCen, Pctl, retrans = TRUE) 
Akritas-Theil-Sen line for censored data  
  
ln(AtraConc) = -5.4878 + 0.0889 * Pctl  
Kendall's tau = 0.3465   p-value = 0 
 

 
 
There is not yet (June 2022) a good nonparametric “multiple regression” method for 
censored data.  There are ‘robust regression’ methods that perform nonparametric 
regression but I’ve never seen them applied to censored data. 
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11. Trend Analysis for Censored Data 
 
Load the Gales_Creek dataset:  
> data(Gales_Creek)   #   from the NADA2 package 
> attach(Gales_Creek) 
 
Nonparametric Methods 
ATS (no covariate or seasonal variation) 
We choose to use the original units (LOG=FALSE) because the data appear linear over 
time with one large outlier, and a nonparametric test will not be overly influenced by one 
outlier.  Running the ATS function on concentration versus decimal time, we find strong 
evidence for a downtrend (p = 0.006): 
 
> ATS(`Total Recoverable Chromium`, CrND, dectime, LOG = FALSE) 
Akritas-Theil-Sen line for censored data  
  
Total Recoverable Chromium = 181.2617 -0.0896 * dectime 
Kendall's tau = -0.234   p-value = 0.00648 
  

 
It isn’t easy to see on the plot, but the detection limits shown as dashed lines are higher 
before 2012 as opposed to after 2012.  The methods of this section of the course work 
well with multiple detection limits in the data record. 
 
ATS on residuals from a smooth with a covariate 
Using the centrend function, we first smooth the chromium – streamflow relationship, 
and then test the residuals for trend: 
 
> centrend(`Total Recoverable Chromium`, CrND, mean_daily_flow_cfs, dectime) 
Akritas-Theil-Sen line for censored data  
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Total Recoverable Chromium residuals = 60.117 -0.0301 * dectime 
Kendall's tau = -0.0579   p-value = 0.5051 
 
There is no trend in chromium concentration once the effect of streamflow has been 
subtracted out.  It appears that the evidence for a downtrend was due to a change in the 
flow regime over the time period.  There is a strong relationship between flow and 
chromium concentrations.   
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Perhaps there is a trend in either the dry season alone, ignoring the effects of high flows 
on the trend test?  Perform the Seasonal Kendall test using the censeaken function and 
pay attention to the individual season results by plotting them using the seaplots = TRUE 
option. 
 
> censeaken(dectime, `Total Recoverable Chromium`, CrND, Season, seaplots = 
TRUE) 
 
DATA ANALYZED: Total Recoverable Chromium vs dectime by Season  
----------  
  Season  N    S    tau     pval Intercept    slope 
1    Dry 34 -120 -0.214 0.069046    101.24 -0.05001 
----------  
  Season  N   S    tau    pval Intercept   slope 
1    Wet 29 -83 -0.204 0.12381    233.15 -0.1151 
----------  
Seasonal Kendall test and Theil-Sen line  
  reps_R  N S_SK tau_SK   pval intercept    slope 
1   4999 63 -203  -0.21 0.0134    181.26 -0.08965 
 
There is an overall trend once the Seasonal Kendall test has removed all comparisons 
between values in different seasons.  Also, the dry season has a pvalue of 0.069.  The 
prevailing wisdom in statistics in 2019 is to not get too rigid about an alpha of 0.05.  A 
value of 0.069 is close to 0.05 and the trend in the dry season graph appears strong.  I 
would report in this case that there is an overall downtrend and a downtrend in the dry 
season.  The high flows in the wet season were preventing the non-seasonal centrend 
function from seeing the trend. 
 

Seasonal Kendall Test Results 
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Dry Season Results 

 
 

Wet Season Results 

 
 

 
Seasonal Kendall test with a covariate 
The centrendsea function will perform the seasonal Kendall test on the residuals from a 
GAM smooth of the original Y variable verses a covariate, like flow.  This first computes 
the same covariate adjustment of the centrend function and using the residuals from the 
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smooth, tests the "covariate-adjusted trend" using the Seasonal Kendall test. The 
variables to be entered are, in order, the Y variable to be tested for trend, the T/F 
indicator of censoring for the Y variable, the covariate, the time variable, and the season 
category variable.  For the Gales Creek chromium data,  
 
centrendsea(`Total Recoverable Chromium`, CrND, mean_daily_flow_cfs, dectime, 
Season) 
 
Trend analysis by Season of: Total Recoverable Chromium adjusted for 
mean_daily_flow_cfs  
----------  
  Season  N  S     tau    pval Intercept   slope 
1    Dry 34 -8 -0.0143 0.91638     34.52 -0.0172 
----------  
  Season  N   S    tau    pval Intercept    slope 
1    Wet 29 -58 -0.143 0.28481    86.864 -0.04316 
----------  
Seasonal Kendall test and Akritas-Theil-Sen line on residuals  
  reps_R  N S_SK  tau_SK   pval intercept    slope 
1   4999 63  -66 -0.0683 0.4318    59.654 -0.02967 
---------- 

 
 



NADA2 Tutorial  
 

56 

 
There is no trend in flow-adjusted chromium found for this site and dates.  The slight 
decrease of the ATS line above, which includes the influence of the below detection limit 
observations as well as detected observations, is not significantly different from a zero 
slope. 
 
Parametric Methods 
Simple Censored Regression 
Using the default log transformation of chromium because we know there is one large 
outlier lurking, the cencorreg function shows that the residuals are not a normal 
distribution, but the data appear quite straight except for the one high outlier.  There is 
likely no better scale to work in – untransformed concentrations would be far worse.  
Without deleting the outlier (you should check it to see if there’s been an error, but you 
can’t because this isn’t your data!), do not delete the outlier without cause and work in 
the log units. 
 
> cencorreg(`Total Recoverable Chromium`, CrND, dectime) 
 Likelihood R = -0.2665                     AIC = 163.4814  
 Rescaled Likelihood R = -0.2775            BIC = 168.9581  
 McFaddens R = -0.1697  
  
Call: 
survreg(formula = "log(Total Recoverable Chromium)", data = "dectime",  
    dist = "gaussian") 
 
Coefficients: 
 (Intercept)      dectime  
192.32546251  -0.09565766  
 
Scale= 0.9595278  
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Loglik(model)= -78.2   Loglik(intercept only)= -80.6 
 Chisq= 4.64 on 1 degrees of freedom, p= 0.0312  
n= 63 

 
The regression p-value of 0.03 says that there is a trend.  The slope of – 0.095 log units 
per year will be approximately a 10% decrease in chromium per year.  But is this slope a 
good estimate, given that there appear to be a confounding effect of streamflow?  So 
perform a censored multiple regression. 
 
Censored Multiple Regression 
Create a data frame of the two X variables, dectime and flow, and try again.  This is a 
better model if flow explains a lot of the variation in concentration.  If that’s the case the 
model’s AIC will be lower than the previous AIC of 163.48. 
 
> timeflow <- data.frame (dectime, mean_daily_flow_cfs) 
> cencorreg(`Total Recoverable Chromium`, CrND, timeflow) 
 Likelihood R2 = 0.5926                     AIC = 113.5493  
 Rescaled Likelihood R2 = 0.6424            BIC = 121.1848  
 McFaddens R2 = 0.3511  
  
Call: 
survreg(formula = "log(Total Recoverable Chromium)", data = 
"dectime+mean_daily_flow_cfs",  
    dist = "gaussian") 
 
Coefficients: 
        (Intercept)             dectime mean_daily_flow_cfs  
      220.206866401        -0.109654346         0.001290593  
 
Scale= 0.5499025  
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Loglik(model)= -52.3   Loglik(intercept only)= -80.6 
 Chisq= 56.57 on 2 degrees of freedom, p= 5.19e-13  
n= 63 
 

 
The QQ plot looks great, and the residuals do not differ from a normal distribution.  The 
AIC is considerably lower for the 2-variable model, so this model that accounts for flow 
variation should be used instead of the original model. 
 
Censored Multiple Regression with Seasonal Variables 
Sounds like a menu option (‘seasonal vegetables’), doesn’t it?  Create the sin and cos 
function variables using 2*pi*dectime, and add it to the stew.  See if they add anything. 
 
> sinT <- sin(2*pi*dectime) 
> cosT <- cos(2*pi*dectime) 
> timeflowseas <- data.frame(dectime, mean_daily_flow_cfs, sinT, cosT) 
> cencorreg(`Total Recoverable Chromium`, CrND, timeflowseas) 
 Likelihood R2 = 0.659                     AIC = 106.3479  
 Rescaled Likelihood R2 = 0.7143            BIC = 118.3012  
 McFaddens R2 = 0.4206  
  
Call: 
survreg(formula = "log(Total Recoverable Chromium)", data = 
"dectime+mean_daily_flow_cfs+sinT+cosT",  
    dist = "gaussian") 
 
Coefficients: 
(Intercept)     dectime    mean_daily_flow_cfs           sinT            cosT  
   196.271  -0.09773029             0.00104809     0.21495631      0.30433249  
 
Scale= 0.5097264  
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Loglik(model)= -46.7   Loglik(intercept only)= -80.6 
 Chisq= 67.77 on 4 degrees of freedom, p= 6.69e-14  
n= 63 
 

 
The QQ plot looks good.  The sin and cos model has a lower AIC (106.3 versus the 2-
variable model’s 113.5) so this is the best model of the three.  The slope of -0.098 per 
year still maps to around a 10% decrease in concentration per year. 
 
12. Logistic Regression 
 
The ReconLogistic dataset presents atrazine concentrations at streams across the 
midwestern United States.  There were multiple detection limits, and a health advisory of 
1 ug/L.  Several characteristics of the basin at the time of sampling, including 
streamflow, are also recorded. 
> detach(Recon)  # to make sure the datasets aren’t confused 
> data(ReconLogistic)   #  from the NADA2 package 
> attach(ReconLogistic) 
 
We will model the above/below 1 ug/L pattern using the GT_1 variable.  Most variables 
names have been changed into all caps to avoid conflict with the Recon dataset, but 
detaching Recon should have taken care of any problem.  The primary assumption is that 
there is a linear relationship between the X variables and the log(odds).  Start by checking 
VIFs for all 6 candidate variables.  The glm command using the family=binomial(logit) 
link function produces the equation: 
 
> glm.1 <-glm(GT_1 ~ APPLIC + CORNpct + SOILGP + PRECIP + DYPLANT + FPCTL, 
family=binomial(logit)) 
> vif(glm.1) 
  APPLIC  CORNpct   SOILGP   PRECIP  DYPLANT    FPCTL  
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1.802862 1.738165 1.467392 1.550877 1.172150 1.119903  
 
There	is	no	multicollinearity	between	the	variables,	so	the	reported	p-values	should	
be	trustworthy.	
	
> summary(glm.1) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-2.1267  -0.4117  -0.1715   0.3839   3.4336   
 
Coefficients: 
             Estimate Std. Error z value     Pr(>|z|)     
(Intercept) -6.323566   1.693157  -3.735     0.000188 *** 
APPLIC       0.017530   0.020220   0.867     0.385984     
CORNpct      0.034572   0.023263   1.486     0.137250     
SOILGP       0.439216   0.503541   0.872     0.383070     
PRECIP       0.039064   0.015949   2.449     0.014315 *   
DYPLANT     -0.016791   0.001919  -8.749      < 2e-16 *** 
FPCTL        0.036820   0.006130   6.006 0.0000000019 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 558.0  on 422  degrees of freedom 
Residual deviance: 245.9  on 416  degrees of freedom 
AIC: 259.9 
 
To compute the overall test of whether this model is better than no model at all, the test 
that all slopes are zero, first compute the null model by using a 1 instead of any X 
variables in the right-hand side of the equation: 
 
> glm.0 <- glm(GT_1 ~ 1, family=binomial(logit)) 
> anova(glm.0, glm.1, test="Chisq") 
Analysis of Deviance Table 
 
Model 1: GT_1 ~ 1 
Model 2: GT_1 ~ APPLIC + CORNpct + SOILGP + PRECIP + DYPLANT + FPCTL 
  Resid. Df Resid. Dev Df Deviance  Pr(>Chi)     
1       422      558.0                           
2       416      245.9  6    312.1 < 2.2e-16 *** 
 
The test statistic often named G equals 312.1.  Compared to a chi-squared distribution 
with 6 degrees of freedom, the difference in the number of X variables between the two 
models, this statistic has a p-value of 2 x 10^-16, and so is very significant.  We conclude 
that there is information in this model for predicting atrazine occurrence above 1 and 
proceed to try and find the best model.  The simplest way to have the computer tell you 
the best logistic regression model is to use the bestglm command.  But let’s try manually 
first and see how we do.  We need to see if any of the X variables need to be transformed.  
  
> residualPlots(glm.1, type = "deviance") 
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        Test stat Pr(>|Test stat|)     
APPLIC     2.2736        0.1315939     
CORNpct    0.9137        0.3391386     
SOILGP     8.8183        0.0029822 **  
PRECIP     4.2759        0.0386572 *   
DYPLANT   12.0510        0.0005177 *** 
FPCTL      3.4084        0.0648658 . 
 

 
It is hard to judge residuals plots with logistic regression because there are separate 
groups of residuals for the Y = 0 and 1 data.  The smooth for DYPLANT appears curved, 
but is not an improvement. If lnDYPLANT is substituted for DYPLANT the AIC 
increases, so is not a better model.   
 
Using glm.1,  APPLIC had the highest p-value, so we’ll drop it and see if AIC goes 
below 259.9. 
 
> glm.3 <-glm(GT_1 ~ CORNpct + SOILGP + PRECIP + DYPLANT + FPCTL, 
family=binomial(logit)) 
> summary(glm.3) 
 
Call: 
glm(formula = GT_1 ~ CORNpct + SOILGP + PRECIP + DYPLANT + FPCTL,  
    family = binomial(logit)) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-2.2041  -0.4140  -0.1716   0.3764   3.4801   
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) -6.818507   1.599850  -4.262 2.03e-05 *** 

0 10 20 30 40 50

-2
-1

0
1

2
3

APPLIC

D
ev

ia
nc

e 
re

si
du

al
s

0 10 20 30 40

-2
-1

0
1

2
3

CORNpct

D
ev

ia
nc

e 
re

si
du

al
s

1.5 2.0 2.5 3.0 3.5

-2
-1

0
1

2
3

SOILGP

D
ev

ia
nc

e 
re

si
du

al
s

50 60 70 80 90 110

-2
-1

0
1

2
3

PRECIP

D
ev

ia
nc

e 
re

si
du

al
s

0 50 150 250 350

-2
-1

0
1

2
3

DYPLANT

D
ev

ia
nc

e 
re

si
du

al
s

0 20 40 60 80 100

-2
-1

0
1

2
3

FPCTL

D
ev

ia
nc

e 
re

si
du

al
s

-6 -4 -2 0 2 4

-2
-1

0
1

2
3

Linear Predictor

D
ev

ia
nc

e 
re

si
du

al
s



NADA2 Tutorial  
 

62 

CORNpct      0.045965   0.019277   2.384  0.01711 *   
SOILGP       0.509550   0.495964   1.027  0.30424     
PRECIP       0.043378   0.015074   2.878  0.00401 **  
DYPLANT     -0.016598   0.001876  -8.848  < 2e-16 *** 
FPCTL        0.037835   0.005993   6.313 2.73e-10 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 558.00  on 422  degrees of freedom 
Residual deviance: 246.66  on 417  degrees of freedom 
AIC: 258.66 
 
This	5-variable	model	is	improved	over	glm.1.		SOILGP	remains	insignificant	so	let’s	
drop	that	and	see	the	effect	on	AIC.	
 
> glm.4 <-glm(GT_1 ~ CORNpct + PRECIP + DYPLANT + FPCTL, 
family=binomial(logit)) 
> summary(glm.4) 
 
Call: 
glm(formula = GT_1 ~ CORNpct + PRECIP + DYPLANT + FPCTL, family = 
binomial(logit)) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-2.1097  -0.4123  -0.1875   0.3781   3.3046   
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) -5.856860   1.267119  -4.622 3.80e-06 *** 
CORNpct      0.039045   0.017943   2.176 0.029554 *   
PRECIP       0.050493   0.013412   3.765 0.000167 *** 
DYPLANT     -0.016507   0.001866  -8.846  < 2e-16 *** 
FPCTL        0.037770   0.005970   6.327 2.51e-10 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
    Null deviance: 558.00  on 422  degrees of freedom 
Residual deviance: 247.72  on 418  degrees of freedom 
AIC: 257.72 
 
AIC is lower (improved).  All terms are significant.  We’ll settle on this as our final 
model.  This is the model found ‘best’ using bestglm (note that bestglm requires the 
dataframe to have the 0/1 Y variable in the last column, which ReconLogistic does). 
 
> bestglm (ReconLogistic, family = binomial(logit), IC = "AIC") 
Morgan-Tatar search since family is non-gaussian. 
AIC 
BICq equivalent for q in (0.388676345462894, 0.914863500091258) 
Best Model: 
               Estimate  Std. Error   z value     Pr(>|z|) 
(Intercept) -6.53329819 1.181212560 -5.531010 3.183926e-08 
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CORNpct      0.04814197 0.018616040  2.586048 9.708340e-03 
DYPLANT     -0.01743824 0.002029210 -8.593611 8.427813e-18 
FPCTL        0.03585721 0.006189977  5.792787 6.922797e-09 
TEMP         0.50653496 0.102252080  4.953786 7.278310e-07 
 
glm.4 has slopes with algebraic signs that make scientific sense, and all explanatory 
variables are significant at alpha = 0.05.  The model can be compared to the original 6 
variable model using either a partial test, or with the AIC.  The partial test determines 
whether the two variables that were dropped add significantly to the explanatory power 
of the model, just as in multiple linear regression.  The null hypothesis is that they do not; 
not rejecting the null hypothesis says to keep the simpler model.   
 
> anova(glm.4, glm.1, test="Chisq") 
Analysis of Deviance Table 
 
Model 1: GT_1 ~ CORNpct + PRECIP + DYPLANT + FPCTL 
Model 2: GT_1 ~ APPLIC + CORNpct + SOILGP + PRECIP + DYPLANT + FPCTL 
  Resid. Df Resid. Dev Df Deviance Pr(>Chi) 
1       418     247.72                      
2       416     245.90  2   1.8257   0.4014 
 
We do not reject that the smaller model is just as good.  Go with glm.4.    Finally, if we 
want to get an r-squared or a Brier score, and get some plots of the relation between the 
log-odds and each X variable, compute the same 4-variable model using the lrm 
command from the rms package: 
 
> Recon.frame = datadist(CORNpct, DYPLANT, FPCTL, TEMP, GT_1) 
> options(datadist = "Recon.frame") 
> lrm4 <- lrm(GT_1 ~ CORNpct + DYPLANT + FPCTL + TEMP, data = ReconLogistic) 
> lrm4 
Logistic Regression Model 
  
 lrm(formula = GT_1 ~ CORNpct + DYPLANT + FPCTL + TEMP, data = ReconLogistic) 
  
                        Model Likelihood      Discrimination    Rank Discrim.     
                              Ratio Test             Indexes          Indexes     
 Obs           423    LR chi2     323.35      R2       0.729    C       0.939     
  0            266    d.f.             4      R2(4,423)0.530    Dxy     0.877     
  1            157    Pr(> chi2) <0.0001    R2(4,296.2)0.660    gamma   0.877     
 max |deriv| 8e-07                            Brier    0.076    tau-a   0.410     
  
           Coef    S.E.   Wald Z Pr(>|Z|) 
 Intercept -6.5333 1.1812 -5.53  <0.0001  
 CORNpct    0.0481 0.0186  2.59  0.0097   
 DYPLANT   -0.0174 0.0020 -8.59  <0.0001  
 FPCTL      0.0359 0.0062  5.79  <0.0001  
 TEMP       0.5065 0.1023  4.95  <0.0001 
 
> plot(Predict(lrm4)) 
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13. Multivariate Methods for Censored Data 
 
Symonds et al (2016) used microbial source tracking (MST) markers to detect fecal 
pollution in waters along the coast of Florida.  Six MST markers are in the dataset 
Markers.xls in interval-censored format, where (0 to MDL) indicate values below a limit 
of detection.  Nonzero lower ends of the interval indicate either (MDL to QL) data or 
detected values above the QL.  Also included is the US EPA total enterococci marker 
‘Entero1A’, a general fecal pollution indicator. 
 
a)  Test whether the pattern of the six MST markers plus the Entero1A indicator differs 
among the five sites using ANOSIM. 
 
b) Test whether there is a ‘trend’ (correlation) between the six MST markers versus the 
general fecal pollution indicator using the Mantel test for trend analysis using Kendall’s 
tau correlation between the matrices (multivariate nonparametric correlation). 
-------------------------- 
 
Solution: 
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a)  Load the data and compute the ranks of the uscores; then compute the anosim test for 
group differences and illustrate the results with an MDS: 
> data(Markers)   # in the NADA2 package 
> View(Markers)                                                                                      
> Mdat <- Markers[, -15]            # removes the Site Name column 
> attach(Mdat) 
> M.usc <- uscoresi(Mdat)    # uscoresi drops rows with NAs  (row 13 here) 
> M.euclid <- dist(M.usc) 
> Site <- Markers$Site_Name[-13]  # delete the site entry for row 13 with NAs 
> M.anosim <- anosim(M.euclid, Site) 
> M.anosim 
 
Call: 
anosim(x = M.euclid, grouping = Site)  
Dissimilarity: euclidean  
 
ANOSIM statistic R: 0.2837  
      Significance: 0.002  
 
Permutation: free 
Number of permutations: 999 
 
> anosimPlot(M.anosim) 

 
There is a difference between the five sites.  To illustrate which sites appear different 
than others, draw an NMDS plot: 
> uMDS(M.usc, group = Site, legend.pos = "topright", title = "NMDS of 
rank(uscores) for markers + entero") 
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From the left-right axis (NMDS1) we see that all three inlets (Port of Miami, Port 
Everglades and Baker’s Haulover) are on the left side, while Miami Central, an ocean 
outfall site, is on the right side.  That is the main contrast between sites.  From the second 
axis (NMDS2) there are one or two samples within Sites that are ‘outliers’ towards the 
top as compared to others in that site.  Some characteristic differs in those samples.  
Sample 11 compared to the rest of Miami_North and site 14 compared to the rest of 
Baker’s Haulover, for example.  Second axes for NMDS aren’t always interpretable, but 
the first axis should be expected to show the main difference detected by the ANOSIM 
result. 
 
If you’d like to draw the NMDS plot manually, perhaps to change some options from 
what is in the function, here is the R code that will draw the same plot as the uMDS 
function: 
 
> M.euclid <- dist(M.usc)       # already previously created 
> M.nmds <- metaMDS(M.euclid) 
> Site <- as.factor(Site) 
> gp.color <- as.integer(Site) 
> Mplot <- ordiplot(M.nmds, type="none", display = "sites", main="NMDS of 
rank(uscores) for markers + entero") 
> points(Mplot, "sites", pch=19, col=gp.color) 
> text(Mplot, "sites", pos=4, cex = 0.8) 
> leg.col <- c(1: length(levels(Site))) 
> legend("topright", legend=levels(Site), bty="n", col = leg.col, text.col = 
leg.col, pch = 19) 
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b) Create two triangular distance matrices, one for the 6 MST markers and the second for 
the general fecal pollution indicator (entero1A) data.  Then correlate the two matrices 
using the Mantel command.  This is to see if there is a ‘trend’ in the MST marker pattern 
with increasing entero1A. 
 
> Mdata <- Markers[-13,]  # delete row with NAs 
> M6 <- Mdata[, -(13:15)]  # only keep columns for the 6 markers 
> M6.usc <- uscoresi(M6) 
> M6.euclid <- dist(M6.usc)  # matrix for the 6 MST markers 
> ent <- Mdata[, 13:14]   # the entero1A data 
> ent.usc<-uscoresi(ent) 
> ent.euclid<-dist(ent.usc)  # matrix for the entero1A data 
>  M6.Ktau <- mantel(ent.euclid, M6.euclid, method="kendall", permutations = 
9999)  
> M6.Ktau 
 
Mantel statistic based on Kendall's rank correlation tau  
 
Call: 
mantel(xdis = ent.euclid, ydis = M6.euclid, method = "kendall",      
permutations = 9999)  
 
Mantel statistic r: 0.3627  
      Significance: 1e-04  
 
Upper quantiles of permutations (null model): 
   90%    95%  97.5%    99%  
0.0471 0.0682 0.0876 0.1105  
Permutation: free 
Number of permutations: 9999 
 
There is a significant positive correlation between the MST marker values and the 
entero1A values.  One way to picture the correlation is to plot their distance matrix 
entries against one another.  The x,y pairs are those in the triangular matrices that are 
being correlated using Kendall’s tau in the mantel test.  If there was a positive 
correlation, for example, larger distances (relating small to large entero1A data) would 
also have larger M6 distances between MST marker concentrations.  This is the pattern 
seen in the plot. 
 
> Site <-  as.factor(Mdata$Site_Name) 
> gp.color <- as.numeric(Site)  # assigns numbers to group names in Site_Name 
> plot(ent.euclid, M6.euclid, pch = 19, col = gp.color, main = "Correlation of 
distance matrix of rank(uscores)") 
> lws <- lowess(ent.euclid, M6.euclid) 
> lines(lws) 
> legend("bottomright", legend=levels(Site), bty="n", col = 1:nlevels(Site), 
pch = 19) 
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The plot, in addition to being colorful, shows the general increase of M6 distances as a 
function of entero1A distances, as shown by the lowess smooth.  As entero1A values 
increase, the pattern of 6 marker concentrations also increases. 
 
Extra Credit:  J 
Which MST marker(s) have the highest correlation with the Entero1A values?  This can 
be determined with the bioenv command in the vegan package.  This command performs 
iterative mantel tests with subsets of the marker data.  The highest correlation coefficient 
is the set of best predictors, which may be 1 up to all 6 of the markers.   
> bioenv (ent.euclid, M6.usc, method = "kendall") 
 
Call: 
bioenv(comm = ent.euclid, env = M6.usc, method = "kendall")  
 
Subset of environmental variables with best correlation to community data. 
 
Correlations:    kendall  
Dissimilarities: euclidean  
Metric:          euclidean  
 
Best model has 1 parameters (max. 6 allowed): 
usc.HF183_lo 
with correlation  0.4591559 
 
The highest correlation model is with one marker, HF183.  This can be illustrated by 
plotting the entero1A uscores against the HF183 uscores.  HF183 was the 4th of six 
columns within M6. 
> plot(ent.usc, M6.usc[,4], pch = 19) 
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You can plot ent.usc against the other five MST markers if you wish to see which 
markers appear to be related to the Entero1A concentrations.  My look at the plots – 
BacHum is also correlated, and HPyV has a binary style correlation – as Entero1A 
increases the probability of a high rather than low PHyV increases -- rather than a linear 
relationship.  This is because HPyV values occur in just two categories, (0 to 249) and 
(250 to 499).  Had all data been censored to <500 this relationship would not have been 
visible.  See the plot below.  HpyV was the 5th of the 6 marker columns. The other three 
markers (all animal MST markers) show little correlation with Entero1A. 
 
> plot(ent.usc, M6.usc[,5], ylab = "HPyv rank of uscores") 
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Appendix	

A	"Flowchart"	for	Computation	of	UCL	/	EPC	for	Data	with	Nondetects	
	
The	following	steps	can	guide	your	choice	of	a	method	to	compare	a	UCL	to	a	legal	
standard	or	health	advisory.		Methods	depend	on	the	number	of	observations	
(detects	and	nondetects)	available.	
	
1.	 Are	there	at	least	20	observations?	
NO:	 Assume	the	best	fitting	distribution	to	estimate	the	UCL.		Go	to	step	2.	
YES:	 Use	a	bootstrap	(nonparametric	estimation)	method.		Go	to	step	3.	
	
2.	 Distributional	Methods		
2a)	 Use	a	boxplot	(the	cboxplot	command)	to	take	a	first	look	at	the	data.		Decide	
whether	or	not	outliers	are	retained	or	not	based	on	the	sampling	strategy	that	was	
used	and	the	objectives	of	the	study.		If	data	were	collected	using	a	probabilistic	
sample,	an	equal-area	sample,	or	other	representative	sampling,	keep	all	
observations	unless	the	portions	of	the	area	the	outliers	represent	are	to	be	
excluded	from	the	estimation	study.		If	it	is	unclear	what	area	each	observation	
represents,	investigate	why	the	outliers	occur	and	decide	accordingly.		Note	that	
outliers	will	strongly	affect	the	estimate	of	the	UCL95,	so	this	decision	is	critical.		If	
they	are	part	of	what	people	have	been	exposed	to,	keep	them.		If	they	are	mistakes	
or	represent	an	area	that	is	not	to	be	considered,	delete	them.		A	statistical	test	
cannot	be	used	to	make	this	decision	for	you.	
	
2b)	 Decide	which	of	three	distributions	best	fits	the	data	using	either	the	
cenCompareQQ	or	cenCompareCdfs	function.		Of	these	three,	select	the	distribution	
with	either	the	highest	PPCC	or	lowest	BIC	statistic.		I	prefer	the	BIC	statistic	
because	it	better	measures	the	misfit	caused	by	the	normal	distribution	going	
negative	and	not	matching	the	0	lower	limit	of	the	data.	
	
**	If	the	normal	distribution	was	selected,	check	the	low	(left)	end	of	the	plot	to	see	
when	the	projected	values	drop	below	zero,	indicating	negative	concentrations	are	
being	estimated.		If	this	percentage	is	more	than	a	trace,	the	normal	distribution	is	
not	a	good	fit,	even	if	the	PPCC	was	high.		You	should	choose	the	next-highest	PPCC	
distribution	instead,	or	the	lowest	BIC	statistic,	instead	of	the	normal	distribution.			
	
2c)	 Use	the	best-fit	distribution	from	2b	to	compute	the	UCL.	The	three	
commands,	one	for	each	of	the	three	distributions,	are:	
	
> enormCensored(Data, Cen,ci=TRUE, ci.type="upper", ci.method="normal.approx") 
> elnormAltCensored(Data, Cen, ci=TRUE, ci.type="upper", 
ci.method="bootstrap") 
> egammaAltCensored(Data, Cen, ci=TRUE, ci.type="upper", 
ci.method="bootstrap") 
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In	each	of	these	commands,	the	input	column	of	concentrations	plus	detection	limits	
is	shown	as	“Data”,	and	the	censoring	indicator	column	(0/1	or	FALSE/TRUE)	as	
“Cen”.		Use	the	appropriate	variable	names	in	your	dataset	instead.	
	
	
3.		Nonparametric	Methods	
3a)	 If	there	are	multiple	detection	limits,	use	the	Kaplan-Meier	(KM)	estimate,	
computing	a	UCL95	with	a	BCA	or	percentile	bootstrap	estimate.		Report	the	BCA	
UCL95	estimate	for	up	to	40%	NDs	and	the	percentile	bootstrap	for	greater	than	
40%	censoring	(Singh	et	al.,	2006,	page	114).		Use	5000	bootstrap	repetitions	so	
that	the	estimate	is	stable	from	one	time	to	the	next.		 
> enparCensored(Data, Cen, ci=TRUE, ci.method="bootstrap", 
ci.type="upper", n.bootstraps=5000) 
	
3b)	 If	there	is	only	one	detection	limit	the	KM	method	in	essence	substitutes	the	
detection	limit	for	all	NDs.		It	will	not	project	values	below	the	lowest	DL	as	that	
would	require	a	distribution	to	show	how	the	values	are	arranged	below	the	lowest	
DL.	This	will	bias	upward	the	estimate	of	the	mean.		I	recommend	you	bootstrap	the	
lognormal	ROS	method	(elnormAltCensored	command)	instead.			
	
Singh	et	al.	(2006)	state	that	the	UCL95	is	better	estimated	using	KM	than	by	ROS	
methods	for	censored	data,	and	based	on	this	overall	statement,	recommend	that	
KM	be	used	in	any	situation	with	nondetects.		I	believe	they	haven't	split	out	the	
one-DL	situations	separately	and	looked	at	the	resulting	bias.		They	simply	state	that	
they've	shown	that	KM	is	always	better.		Statisticians	disagree.	
	
 


