
Practical Stats Newsletter for January 2017 
 
Subscribe and Unsubscribe:   http://practicalstats.com/news  
Archive of past newsletters    http://www.practicalstats.com/news/bydate.html 
 
In this newsletter:  
A.  Practical Stats Courses 
B.  Statistics for "Small Data", Part 2.  The UCL95 
C.  New Online Webinar 
 
A.  Practical Stats Courses 
Our Applied Environmental Statistics online course is making its way to completion.  
There are 9 sections and I've finished 5.  When all is ready, and I truly think that will be 
prior to the next newsletter in March, you'll find the course on our online training site:    
http://practicalstats.teachable.com/ 
I'll send out an announcement to this newsletter list when the course is ready for 
registration. 
 
We also offer in-person training for groups you pull together.  See 
http://practicalstats.com/training/   for details. 
 
 
B.  Statistics for "Small Data"  Part 2.  The UCL95 
In October we looked at using exact tests rather than the more common "large-sample 
approximation" tests to wring the most out of hypothesis tests with small numbers of 
data.  We also strongly recommended that with small data you never decide on which 
class of tests to use, parametric or nonparametric, based on a prior hypothesis test for 
normality.  If you don't remember why, or didn't read our previous newsletter, go to the 
Newsletter Archive at http://www.practicalstats.com/news/bydate.html and take a look. 
 
This month we answer the question "How do I compute a UCL95 with small data sets?" 
The UCL95 is a protective estimate of the mean of a data distribution.  It is a value 
sufficiently high so that the true population mean, the mean out in the field (stream, 
aquifer, etc.) has only a 5% probability of being higher than it.  The mean of a group of 
new observations (and not individual observations) should be compared to the UCL95 – 
see our February 2012 newsletter for more in-depth information, and computation for 
data with nondetects.  With larger datasets (20 observations or more), bootstrapping will 
provide a good estimate of the mean regardless of shape of the data distribution.  But 
what if you have fewer than 20 observations?  Bootstrapping re-uses only the measured 
observations without adding a theoretical distribution to represent the shape of the data.  
With fewer than 20 observations you won't have a good representation of the parts or 
proportions of the distribution you haven't yet measured.  Adding a 'model' by making a 
reasonable assumption about the shape of the distribution should improve estimates over 
those possible from only a handful of observations. 
 



For 8 to 20 observations 
Environmental data are often skewed due to the zero lower bound of data values.  
Unusual observations are therefore found on the high side, not often on the low side.  
Skewed distributions such as the lognormal, gamma, and Weibull are often useful to 
model the data shape.  The decision of which distribution to use is best decided by using 
the shape of larger data sets for the same parameter, collected under similar conditions.  
As a second-best method, one could use a hypothesis test such as the Probability Plot 
Correlation Coefficient (PPCC) or Shapiro-Wilk tests to determine which distribution 
appears to best fit a small set (8 to 20) of observed data.  The lower bound of 8 
observations is based on simulations determining how well these tests can choose the 
distribution to model data shapes.  Below eight, there's insufficient data to even guess 
what the distributional shape may be.  It is also true that below eight observations, any 
method for computing the UCL95 is based on sufficiently few observations that the 
estimate is likely to be pretty far off the mark. 
 
Below I'll use the Shapiro-Wilk test for guessing the best-fitting distribution, using the set 
of 12 downgradient concentrations from the remediation example in October's newsletter.  
The process: 
1.  Decide which distributions to consider.  Here I'll use the normal, lognormal, and 
gamma distributions. 
 2.  Test the goodness of fit for each of the distributions.  The distribution with the highest 
(closest to 1) PPCC or Shapiro-Wilk W is the one that best fits the data.  In R, using the 
EnvStats package (a very useful package, I highly recommend it) the commands are: 
 
>	downgradient	<-	as.numeric(c(0.390,	0.320,	0.300,	0.305,	0.205,	0.200,	
0.195,	0.140,	0.145,	0.090,	0.046,	0.035))	
>	gofTest(downgradient,	dist="norm")	
>	gofTest(downgradient,	dist="lnorm")	
>	gofTest(downgradient,	dist="gamma")	
 
For the downgradient data, the Shapiro-Wilk W values are: 
Normal 0.954 
Lognormal 0.896 
Gamma 0.934 
The normal and gamma distributions fit best, because their statistics are closer to 1.0.  
The normal distribution has a secondary concern -- it may allow the lower end the 
distribution to go negative, an unrealistic situation for environmental variables that 
produces an estimate of the mean, and perhaps the UCL, which is too low.  To test this, 
use the estimates of mean and standard deviation for the assumed normal distribution to 
compute whether 3 standard deviations below the mean is a negative number. If so, the 
lower end is indeed unrealistic. For the fitted normal to these data: 
 
Estimated	Parameter(s):										mean	=	0.1975833	
																																	sd			=	0.1132860	
and 0.197-3*0.113 = –0.142.  The low end of the distribution is indeed described as 
below zero.  In this situation, choose instead the next best fitting distribution, here the 
gamma distribution. 
	



>	egammaAlt(downgradient,	ci=TRUE,ci.type="upper")	
	
Results	of	Distribution	Parameter	Estimation	
--------------------------------------------	
Assumed	Distribution:												Gamma	
Estimated	Parameter(s):										mean	=	0.1975833	
																																	cv			=	0.6349288	
Estimation	Method:															MLE	
Data:																												downgradient	
Sample	Size:																					12	
Confidence	Interval	for:									mean	
Confidence	Interval	Method:						Optimum	Power	Normal	Approximation	
																																	of	Kulkarni	&	Powar	(2010)	
																																	using	mle	of	'shape'	
Normal	Transform	Power:										0.246	
Confidence	Interval	Type:								upper	
Confidence	Level:																95%	
Confidence	Interval:													LCL	=	0.0000000	
																																	UCL	=	0.2822187	
		
and the computed one-sided UCL95 equals 0.282. 
 
For fewer than 8 observations 
When there are fewer than 8 observations, whatever method or distribution you choose 
for computing the UCL95 is likely inaccurate.  If you do know the shape of larger data 
sets for the same parameter under similar conditions, using that shape with the methods 
above for 8-20 observations is the best of the bad available options – collecting more data 
is the primary better option!   Note that the computed UCL95 may be higher than all the 
observations currently measured, and for such small datasets this is a reasonable result. 
 
Some guidance documents recommend using the maximum of the currently available 
data as the estimate of the UCL95 for small datasets.  Is the maximum of <8 observations 
a helpful estimate of the UCL95? A sample mean concentration for skewed data is often 
around the 60th to 80th percentile, and its UCL95 will be higher.  The maximum of 5 
observations has a 33 percent chance of being below the 80th percentile, based on a 
binomial computation.  Therefore the maximum of skewed datasets smaller than 8 
observations is often too low to be equivalent to the UCL95, and more likely to be closer 
to the population mean.  If you use the current maximum value, know that you are likely 
underestimating the UCL95 and so underestimating the risk that the true mean in the field 
is higher than your chosen criterion.  There is likely a greater than 5% chance that the 
population mean exceeds your current maximum observation. 
 
 
C.  New Online Webinar 
Our recent webinar "Introduction to Nondetects And Data Analysis" presented through 
the National Water Quality Monitoring Council is freely available for viewing on our 
training site -- http://practicalstats.teachable.com/ 
It covers  



*  the consequences of substituting one-half the reporting limit on data analysis (spoiler 
alert: its not good). 
*  what software is available for analysis of censored data. 
*  what nonparametric methods are available for estimating summary statistics, test for 
differences between groups, and for correlation/regression of censored data. 
*  what parametric methods are available for estimating summary statistics, test for 
differences between groups, and for correlation/regression of censored data. 
 
Materials (pdf of the slides, a listing of Practical Stats newsletters on dealing with 
nondetects, and more) are also available online at  http://www.practicalstats.com/training/ 
 
'Til next time, 
 
Practical Stats  
-- Make sense of your data 


