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Abstract

Analysis of low concentrations of trace contaminants in environmental media
often results in left-censored data that are below some limit of analytical precision.
Interpretation of values becomes complicated when there are multiple detection
limits in the data — perhaps as a result of changing analytical precision over time.

Parametric and semi-parametric methods, such as maximum likelihood estimation
and robust regression on order statistics, can be employed to model distributions of
multiply censored data and provide estimates of summary statistics. However, these
methods are based on assumptions about the underlying distribution of data. Non-
parametric methods provide an alternative that does not require such assumptions.

A standard nonparametric method for estimating summary statistics of multiply-
censored data is the Kaplan-Meier (K-M) method. This method has seen widespread
usage in the medical sciences within a general framework termed “survival analy-
sis” where it is employed with right-censored time-to-failure data. However, K-M
methods are equally valid for the left-censored data common in the geosciences.

Our S-language software provides an analytical framework based on K-M meth-
ods that is tailored to the needs of the earth and environmental sciences community.
This includes routines for the generation of empirical cumulative distribution func-
tions, prediction or exceedance probabilities, and related confidence limits compu-
tation. Additionally, our software contains K-M based routines for nonparametric
hypothesis testing among an unlimited number of grouping variables.

A primary characteristic of K-M methods is that they do not perform extrap-
olation and interpolation. Thus, these routines cannot be used to model statistics
beyond the observed data range or when linear interpolation is desired. For such
applications, the aforementioned parametric and semi-parametric methods must be
used.
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1 Introduction

It is common for water-quality data sets to contain analytical values that, at
the time of determination, were lower than limits deemed reliable enough to
report as numerical values. Data sets with this characteristic are referred to as
“censored” data sets. If multiple censoring thresholds are present, perhaps as
a result of changing instrument resolution, then the data are called “multiply
censored”.

Several data-analysis procedures are available for censored and multiply-censored
data. These procedures can be divided into three classes (Helsel, 2005): 1)
Simple-Substitution Methods, 2) Parametric Methods, and 3) Nonparametric
Methods.

Simple substitution, where arbitrary quantitative values are substituted for
each censoring limit, produces biased estimates of summary statistics that
are dependent on the value being substituted. Thus, substitution is not a
defensible statistical procedure (Helsel, 1990).

Parametric methods require sufficient data to validate the use of a specific
distributional model — a requirement that is difficult to meet with smaller
multiply-censored datasets.

Helsel and Cohn (1988) and Shumway et al. (2002) describe a semi-parametric
method that is an implementation of regression on order statistics called Ro-
bust ROS. This method has been evaluated as one of the better-performing
methods for estimating summary statistics and modeling distributions of mul-
tiply censored data.

In a prior communication (Lee and Helsel, in press) we described our S-
language software for Robust ROS analysis of multiply-censored datasets. Ro-
bust ROS is a powerful and useful method. However, since ROS is a procedure
based on parametric-linear regression, resultant models and related statistics
are only valid if the assumptions of parametric linear regression are fulfilled.
This includes the assumption that the response variable is a linear function of
the explanatory variable and that the error variance of the model is constant.
Since the statistical distribution of geochemical data is typically skewed, these
assumptions are usually addressed by transforming the data prior to analysis.
Transformation can usually fulfill these requirements, but not always.

In contrast to parametric methods, nonparametric methods do not require
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the assumption of a specific distribution to estimate summary statistics for
multiply-censored datasets. The standard nonparametric method for estimat-
ing summary statistics of censored data is the Kaplan-Meier (K-M) method.
It has seen widespread usage in the medical sciences within a more general
framework termed “survival analysis”.

In survival analysis, the interest is time-to-death, or time-to-failure. In this
context, censored data result when the life of a subject exceeds the study
length. This results in censored data that are right-censored (expressed as
”greater-than” values).

Although survival analysis is rarely concerned with left-censored data, the
methods used, particularly the Kaplan-Meier method, are equally valid for
the left-censored data that are common in the earth and environmental sci-
ences. Unfortunately, K-M based methods have largely been overlooked in the
geosciences.

This communication describes S-language based software tools that gener-
ate empirical cumulative distribution functions (ECDFs) using nonparametric
Kaplan-Meier methods. These tools can be used to generate summary statis-
tics, plot modeled distributions, and predict or estimate modeled values based
on the modeled distributions. Additionally, these tools provide methods for
nonparametric hypothesis testing based on rank-sum methods.

The tools are part of a software library called NADA for R. The library name
is taken from Nondetects and Data Analysis: Statistics for Censored Environ-
mental Data (Helsel, 2005) and is an add-on package for the R environment
for statistical computing (R Development Core Team, 2005).

2 Software Implementation

The functions detailed in this communication build upon functionality pro-
vided in the survival package of R. The survival package is distributed
as a standard part of the R environment. However, survival routines are
incapable of processing left-censored data. To address this issue, we use a for-
malism suggested by Helsel (2005). In this approach left-censored data are
rescaled, or “flipped”, to right-censored data by subtracting the observations
from a large constant value. These rescaled data are then processed in exist-
ing survival-analysis routines and the resultant outputs are flipped back to
the original scale when appropriate. Since this rescaling does not change the
internal proportionality of the data there is no loss of information, or intro-
duced bias. Our software automatically performs all of these rescalings for the
user.



Our software further enhances routines in the survival package by provid-
ing methods for summary, plotting, query, prediction, and hypothesis testing.
These routines provide interfaces and output information that are familiar to
the geoscience community and is also consistent with other methods available
in the NADA for R package.

Our software is written entirely in the S-language, a computer language de-
signed for data analysis and graphics (Becker et al., 1988; Chambers, 1998). R
and S-Plus are the two widely available systems capable of running S-language
software. We have chosen to use R as our primary development target for our
software. Thus, our exposition and discussion of our software are specific to
its use in R. Currently, the routines have not been ported to S-Plus.

Examples of the usage of each function and a discussion of options and out-
put is provided below. Throughout the discussion, S-language constructs and
output are set in mono-spaced font like this. The R command-line prompt
is shown as: > (the greater-than symbol). Where the output is lengthy or is
implied from a previous example, ellipsis (...) is used to designate that the
section has been cut short for the sake of brevity.

2.1 Model Construction

The NADA library functions for constructing and manipulating empirical cu-
mulative distribution functions are listed in Table 1.

For the following examples, we use a dataset of dissolved arsenic concentrations
in groundwater. These data are a subset from the U.S. Geological Survey
National Water Quality Assessment (NAWQA) Data Warehouse (Williamson
and Booth, 2004). The data are distributed as a part of the NADA module
and can be loaded using the data function after the NADA library has been
attached to the working environment.

> library(NADA)
> data(Arsenic)

> Arsenic

As AsCen Aquifer
1 0.090 TRUE A
2 0.090 TRUE B
3 0.090 TRUE A
4 0.101 FALSE B
5 0.136 FALSE B



The Arsenic dataset is structured in an S-language data frame which has a
table or spreadsheet structure. The “As” column is a numeric vector which
contains all the observed arsenic concentration values, both censored and un-
censored. The “AsCen” column is a logical vector containing TRUE or FALSE
where the concentrations in “As” are censored (are a “less-than”) or uncen-
sored respectively.

Typically, analytical data that are received from a laboratory or downloaded
from a database system are not in the above format. It is common for the
censoring qualifiers, or symbols, to be concatenated with numeric values in
“less-than” strings such as <0.5. The NADA library contains the function
splitQual that can separate the character-qualifier symbols from numeric
symbols in these strings and form separate value and qualifier vectors, or
columns. Detailed information on this function is available through on-line
help by typing ?splitQual.

The cenfit function computes an empirical cumulative distribution function
(ECDF) for censored data using the Kaplan-Meier method. This function takes
two mandatory arguments, a numeric vector of observations “obs” and a log-
ical vector “censored” indicating TRUE or FALSE where the corresponding
numeric vector elements are censored or not censored respectively.

> attach(Arsenic)
> AsSECDF = cenfit(obs=As, censored=AsCen)
> ASECDF
n n.cen median mean se(mean)
50.000 23.000 0.638 3.427 1.173

The default textual summary of the model includes the total number of obser-
vations, the number of censored observations (n.cen), the computed median,
mean, and standard error of the mean.

The generic summary function provides more detailed information on ECDF
objects. This includes each observation (obs) with associated values for the
number of observations at risk of exceeding the given value (n.risk), the num-
ber of uncensored observations or “uncensored events” at that value (n.event),
the computed probability or percentile (prob), standard error (std.err), and
upper and lower model confidence limits (in this case 95%).

> summary (AsECDF)

obs n.risk n.event prob std.err
.090 3 0.1600 0.51113
.101 4 0.1600 0.51113
.136 5 0.2133 0.42180
.340 6 0.2667 0.35765
. 457 7 0.3200 0.30754

.95LCL 0.95UCL
.06876 0.4357
.06876 0.4357
.09333 0.4876
.13229 0.5375
.17513 0.5847
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2.2  Model Plotting and Fvaluation

The generic function plot is used to graphically display ECDF objects.
> plot (AsECDF)

Figure 1 shows ECDFs produced using the K-M method. The default x-axis
of the plots is lognormal; however, this can be changed using options to the
plot function. Furthermore, the R function par can be used to extensively
customize the plot.

The ECDF's produced using the K-M method are discrete-interval step func-
tions. These step functions are estimates of a cumulative distribution for the
data. The K-M method approximates this distribution using the following
formula:

kb, —d.
F: J J
jgl bj

The method ranks detected observations from small to large, accounting for
the number of censored data in between each detected observation, and placing
each non-detect at its detection limit prior to ranking. The number b equals
the number of observations, both detected and censored, at and below each
detected concentration. The number of detected observations at that concen-
tration is d (d is greater than 1 for tied values). The incremental exceedance
probability % o 9 is the probability of exceeding the next highest detected con-
centration, gi\]/en the number of data at and below that concentration. The
probability of an observation is the product of the j = 1 to k incremental

probabilities to that point.

The result of this approach is a discrete percentile estimate for every obser-
vation. A step function is formed by plotting each observation-percentile pair
and using constant-interpolation between points. Every step (or jump) in the
plot is at a position where a new observation occurs.

It is important to realize that since the resultant ECDF is a step function,
it is by definition discontinuous, and therefore incapable of linear interpola-
tion or extrapolation. Thus, when the percentile of interest lies outside of the
range of observations, or when a linearly-interpolated percentile estimate is
desired, the K-M method is not appropriate. In such cases, a method that
assumes some sort of model for the data distribution must be employed. T'wo
possible methods for doing so include fully-parametric Maximum Likelihood



Estimation (MLE) methods and the aforementioned Robust-ROS method.

2.3 Model Query and Prediction

The software also provides the ability to use ECDF objects as the basis for
simple queries and univariate-predictive modeling.

Generic methods for querying ECDF objects include median, mean, and sd.
For example:

> median (AsECDF)

[1] 0.638

> mean (AsECDF)
rmean se(rmean)
3.427 1.173

> sd(AsECDF)

[1] 8.295

The mean is generally considered less useful than the median when working
with censored geochemical data. Such data are usually so skewed that the
mean is not a typical value. In addition, when the lowest observation in the
dataset is censored, the K-M estimate of the mean will be biased high.

Estimates of the standard deviation are of less interest than the mean. The
variance and standard deviation are not resistant to skewness and outliers,
and so provide a poor measure of the variability of the data when those data
are strongly skewed.

Quantile statistics, such as the median and inter-quartile range (IQR, or Q75-
Q25) provide more robust measures of central tendency and variability. Per-
centile estimates generated using the K-M method contain no bias.

For quantile estimates, the quantile function returns the observation asso-
ciated with a particular quantile value. For our example data set, the 25th
percentile occurs at approximately 0.14 ug/L:

> quantile(AsECDF, 0.25)
25%
0.136

Note that for percentile estimates, the value is the minimum observation (x-
value) on the ECDF that is intersected by the line drawn at probability (y-
value) of interest. Thus, when the percentile of interest happens to be on a
horizontal portion of a step, the associated observation is the minimum value



along that continuum.

Similarly, the predict function provides a method to predict the probability
of any observation.

> predict (AsECDF, 10)
[1] 0.92

Similar to the quantile function above, predict returns the minimum quan-
tile (y-value) on the ECDF that is intersected by the line drawn at the queried
observation (x-value). Thus, when the observation of interest happens to be
on the vertical portion of a step, the associated quantile is the minimum value
along that continuum.

The pexceed function is a convenience function that returns the probability of
exceedance for an observed value. This is simply one minus the probability of
an observation. This function is useful in cases were the exceedance probability
of an unobserved value is of interest. For example, the exceedance probability
of a water-quality standard or criterion at 10 ug/L is approximately 8 percent:

> pexceed (AsECDF, 10)
[1] 0.08

Figure 1 shows vertical and horizontal lines at an observation of 10 ug/L and
the associated probability and percent chance of exceedance.

2.4  Confidence Interval Estimates

An important option to the cenfit function is the specification of the de-
sired confidence limits to associate with the ECDF'. This is specified using the
conf.int option of cenfit. This option takes a decimal fraction specifying
the desired confidence limits of the ECDF. The default confidence limit is
0.95. Note that the confidence limits of an ECDF can not be updated once it
is constructed. Manipulations, such as query and prediction, will utilize this
confidence interval.

The dotted step functions on Figure 1 show the confidence limits of our con-
structed model. Confidence limits are shown only when a single ECDF is
plotted and may be suppressed using the true/false conf.int option to plot.

The median, quantile, predict and pexceed functions can provide estimates
of confidence intervals around any computed percentile. Confidence intervals
may be presented using the logical conf.int option to these functions. The
following example shows that we can have a 95% certainty that a water-quality



criterion of 10 g/ L has at most a 15 percent chance of exceedance in our data
set.

> pexceed (AsECDF, 10, conf.int=TRUE)
obs pexceed 0.95LCL 0.95UCL
1 10 0.08 0.1522 0.001644

Confidence intervals are based on standard error estimates computed using
Greenwood’s formula — a widely-used method of computing standard errors
in survival analysis (Collett, 2003).

2.5 Factoring ECDFs by Groups

The function cenfit also accepts a third term “groups” which is a vector
of factors that can be used to break the observations into different groups,
or treatments. Grouping observations provides a means to construct multiple
ECDF's that can simultaneously be plotted and queried in functions. Grouping
factors can be any number of discriminating labels such as sampling location,
methods, or analytical instruments.

In our Arsenic data, the third column contains a vector of factors named
“Aquifer” which describes two hypothetical geohydrologic sources for the
data. If we specify Aquifer as a grouping variable to cenfit, the result con-
tains separate ECDF's for each aquifer group.

> ASECDF2 = cenfit(As, AsCen, Aquifer)

> AsECDF2

n n.cen median mean se(mean)
aquifer=A 18 10 0.774 1.99 0.965
aquifer=B 32 19 0.788 4.24 1.734

Individual ECDF's can be obtained by indexing the output object as in the
following: AsECDF2[1], AsECDF2[2].

All of the plotting, query, and prediction functions discussed above also work
with grouped ECDFs. Thus, we can plot the grouped models simply by using
the plot function as in plot (AsECDF2) or interactively overlay plots using
indexing. For example, Figure 2 was produced using the following sequential
commands:

> plot (AsECDF2[1], conf.int=FALSE, 1lty="solid")
> lines(AsECDF2[2], 1lty="dashed")
> legend(locator(), c("Aquifer A", "Aquifer B"), lty=c("solid", "dashed"))



2.6 Hypothesis Testing

Once multiple ECDFs are produced and plotted, the natural progression in
analysis is to determine if significant differences exist between ECDFs.

The cendiff function can test for differences between two or many groups
of data. This function operates identically to the cenfit function. However,
the groups vector is mandatory and serves to factor the observations apart
for hypothesis testing. For example, to test if there is a significant difference
between the arsenic concentrations of the two aquifers shown in Figure 2:

> cendiff (As, AsCen, Aquifer)

N Observed Expected (0-E)~2/E (0-E)~2/V
aquifer=A 18 5.5 7.34 0.461 0.994
aquifer=B 32 13.3 11.48 0.295 0.994

Chisg= 1 on 1 degrees of freedom, p= 0.319

The reported p-value (0.319 in the above output) is always for a two-sided
test. In this case, the null hypothesis is that there is no difference in arsenic
distributions between the two aquifers. Here we can safely conclude that there
is not a significant difference between the two ECDFs shown in Figure 2 as
the reported p-value is larger than 0.05.

The cendiff function uses nonparametric score tests that are extensions to
censored data of Wilcoxon-style tests (rank-sum and Kruskal-Wallis) for un-
censored data. Scores are modified ranks, based on the Kaplan-Meier per-
centiles for all detected observations. The null hypothesis is that the distri-
butions of data in every group are identical (their ECDFs are the same).
The alternative hypothesis is that at least one group is different. Scores are
computed using a weight function; the family of tests derived using different
weights is called the G-rho family of tests (Harrington and Fleming, 1982).
The two most common weights result in the log-rank test, and the Generalized
Wilcoxon or Peto-Peto test. The cendiff function can produce either.

The default test used by the cendiff function is the Peto-Peto test. This form
of the test is more powerful than the log-rank test, and is therefore more likely
to detect true differences when data come from a lognormal distribution (Lee,
1992). The Peto-Peto test “gives more weight to early failures”, meaning that
it is sensitive to differences in the higher values of left-censored data sets (Lee,
1992). Because many environmental data sets are approximately lognormal,
and the upper portions of groups are where detected differences often occur,
the Peto-Peto test is judged to be the most appropriate and is set as the
default.
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2.7 S-language Formula Interface

Both cenfit and cendiff accept S-language formulas as input. S-language
formulas are a syntax that allows the succinct expression of complex statistical
models. These models are expressed in a syntax like: response ~ explanatory
where the tilde symbol (7) reads “is modeled as a function of”. Within the
context of K-M methods, the response is the censored observations, and the
explanatory variables provide means of grouping and/or stratifying the obser-
vations.

The Cen function is provided for the purpose of creating censored-response ob-
jects in formulas. Its usage is analogous to the Surv function in the survival
package. However, unlike Surv, the Cen function provides the necessary frame-
work to process left, right, or interval censored data.

In simple cases, the formula interface merely provides an alternative method of
inputting data into routines. For example, the group factored models described
above could be expressed using formulas:

> cenfit(Cen(As, AsCen) ~ Aquifer)

N Observed Expected (0-E)~2/E (0-E)~2/V
aquifer=A 18 5.5 7.34 0.461 0.994
aquifer=B 32 13.3 11.48 0.295 0.994

Chisg= 1 on 1 degrees of freedom, p= 0.319

3 Conclusions

Our S-language software provides easy to use, extensible functions for generat-
ing empirical cumulative distribution functions (ECDF) and related statistics
using nonparametric Kaplan-Meier methods. Additionally, our software pro-
vides functions that perform nonparametric hypothesis testing of two or more
ECDFs allowing tests for statistical significance between various grouping fac-
tors within a dataset. All of these functions are tailored for the left-censored
data that are common within the geosciences.

These nonparametric methods are applicable when users do not want to make
assumptions about the underlying distribution of data. But, these methods
cannot predict beyond the observed range of data or linearly interpolate values
between observations. In such cases, methods such as MLE or Robust ROS
are more appropriate.
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This software is part of a developing project and will include enhancements
as our work continues. Future enhancements will include maximum-likelihood
estimation methods, related regression methods, and plotting utilities for cen-
sored data.
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5 Appendix A — Obtaining and Installing the Software

The functions described in this communication are part of a software library,
or package, for the R statistical computing environment called NADA for R.

There are currently two widely-available software systems that possess the
ability to run S-language software: S-Plus, a proprietary statistical comput-
ing environment developed by the Insightful Corporation, and “R”, an open-
source computing environment for a variant of the S-language developed by the
R Development Core Team (2005). Although both of these software systems
contain S-language interpreters, there are notable differences in the S-language
constructs available in each system.

We have made R our primary development target. Thus, the primary require-
ment for running the software is a working installation of the R environment.
R is Free Software and can be obtained, used, and modified at no monetary
cost (R Development Core Team, 2005). We have made our software available
under the same conditions as R itself. Thus, it is possible for entities to use
and extend our software even if conditions of law or finance prohibit the use
of a non-Free Software solution.

Once R is installed and the machine has a functioning Internet network con-
nection, the NADA package may be automatically installed using the following
command:

> install.packages("NADA")

Alternatively, the package may be manually installed by downloading it from
the Comprehensive R Archive Network at http://cran.r-project.org and using
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the standard package installation methods described at this site and in the R
documentation.

The U.S. Geological Survey also maintains a larger, more extensive S-Plus
package for water-resource statistics described by Slack and Lorenz (2003)
(see http://water.usgs.gov/software/statistics.html). At the time of publica-
tion this package does not contain the code described in this communication.
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Fig. 1. Empirical Cumulative Distribution Function for multiply-censored data.
Dashed (stepped) lines are confidence limits. Dotted vertical and horizontal lines are
concentration and associated probability of a hypothetical water-quality criterion
at 10 ug/L.
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Fig. 2. Empirical Cumulative Distribution Functions for multiply-censored data.
Solid and dashed lines are different ECDFs resulting from factoring observations
into groups.
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Table 1

Function Name

Purpose

Cen
cenfit
cendiff
plot
mean

sd
median
quantile
predict

pexceed

Creates a censored object for use in formulas
Constructs an ECDF

Tests for differences between ECDF's
Produces a step-function plot of an ECDF
Returns the mean of an ECDF

Returns the standard deviation of an ECDF
Returns the median of an ECDF

Returns quantile estimates of an ECDF
Predicts the quantiles of a value

Predicts the exceedance probability of a value

NADA for R library functions for the creation and manipulation of empirical dis-
tribution functions (ECDF) of multiply-censored data. Detailed information on in-
dividual functions is available through the on-line help system.
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