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Estimation of Distributional Parameters for
Censored Trace Level Water Quality Data
1. Estimation Techniques

ROBERT J. GrLLioM AND DENnIS R. HELSEL
U.S. Geological Survey, Reston, Virginia

A recurring difficuity encountered in investigations of many metals and organic contaminants in
ambient waters is that a substantial portion of water sample concentrations are below limits of detection
established by analytical laboratories. Several methods were evaluated for estimating distributional
parameters for such censored data sets using only uncensored observations. Their reliabilities were
evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of
parent distributions and censored at varying levels. Eight methods were used to estimate the mean,
standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of
uncensored observations, for determining the best performing parameter estimation method for any
particular data set. The most robust method for minimizing error in censored-sample estimates of the
four distributional parameters over all simulation conditions was the log-probability regression method.
With this method, censored observations are assumed to follow the zero-to-censoring level portion of a
lognormal distribution obtained by a least squares regression between logarithms of uncensored con-
centration observations and their z scores. When method performance was separately evaluated for each
distributional paramecter over all simulation conditions, the log-probability regression method still had
the smallest errors for the mean and standard deviation, but the lognormal maximum likelihood method
had the smallest errors for the median and interquartile range. When data sets were classified prior to
parameter estimation into groups reflecting their probable parent distributions, the ranking of estimation
methods was similar, but the accuracy of error estimates was markedly improved over those without

classification.

INTRODUCTION

Interest in the occurrence of trace levels of toxic substances
in surface and ground waters and their effects on human
health and aquatic ecosystems has increased during the last 10
years. However, investigations of trace substances in ambicnt
waters have encountered a recurring difficulty: a substantial
portion of water sample concentrations are below the limits of
detection established by analytical laboratories. Measure-
ments below the detection limit are generally reported as “less
than the detection limit” rather than as numerical values.
Data sets with “less-than” observations are termed “censored
data” in statistical terminology. Censored data do not present
a serious interpretation problem if concentrations of primary
interest are well above the detection limit, but this is often not
the case. For some chemicals, established water quality cri-
teria are below commonly applied detection limits. For many
others, the great uncertainty in the effects of long-term ex-
posure to very low levels also make it desirable to assess the
frequency of occurrence of concentrations below the detection
limit. In short, there is a need to estimate the frequency distri-
bution of concentrations above, near, and below detection
limits using only data above the detection limit.

The purpose of this study is to address several key aspects
of estimating distributional parameters from censored data.
These include (1) the performance of several estimation meth-
ods when estimating distributional parameters from small
samples drawn from a wide range of underlying distributions
and censored to varying degrees; (2) Criteria for determining,
based only on attributes of data remaining after censoring,
which estimation method is most likely to be best for each
data set; and (3) the reliability of estimates from censored data
of four distributional parameters: the mean, standard devi-
ation, median, and interquartile range.
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PrEVIOUS STUDIES

There have been extensive investigations of methods for es-
timating location and scale parameters for censored data
drawn from specific parent distributions [David, 1981]. There
have been far fewer studies of the application of these methods
io environmental data for which parent distributions are un-
known and sample sizes are small.

One of the first applications of censored data analysis in the
environmental field was by Leese [1973], who applied cen-
sored data techniques to flood frequency analysis. She found
that standard errors of mean annual flood estimates could be
reduced by using the maximum likelihood estimates (MLE)
for censored Gumbel distributions. Recently, Condie and Lee
[1982] showed that maximum likelihood estimators for small
censored samples from the three parameter lognormal and the
log-Pearson type III distributions improved flood frequency
estimates.

Owen and DeRouen [1981] addressed the problem of esti-
mating a mean from censored air contaminant data. They
used Monte Carlo techniques to evaluate the performance of
MLE mecthods derived for lognormal and delta (lognormal
augmented by some percentage of zeros) distributions when
estimating the mean of censored data drawn from a combi-
nation of lognormal and delta distributions. For the range of
sample sizes (n = 5 to n = 50), population coefficients of vari-
ation (CV = 0.8-1.6), and degrees of type II censoring (5-25%)
that they investigated, the delta MLE usually had lower mean
square crrors than the lognormal MLE. Type II censoring
fixes the proportion of data censored in each data set, while
type I censors all data below a fixed value [ David, 19817. Most
recently, Hashimoto and Trussell [1983] compared several es-
timators of the mean for censored water quality data. Their
examples illustrate the bias caused by three commonly used
methods: discarding censored observations, setting all cen-
sored observations equal to zero, or assigning the detection
limit to all censored observations. Their examples also includ-
ed a comparison of estimates of the mean from the lognormal
MLE to estimates made by filling in censored observations
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from a least squares regression relationship fit to uncensored
observations plotted on a log-probability scale. That compari-
son suggested that the regression approach yields results very
similar to those of the MLE method.

APPROACH

Generation of data. Sixteen parent distributions were se-
lected as representative of the range of frequency distributions
that is typical of trace water-quality data. Five hundred data
sets of sample sizes 10, 25, and 50 observations were generated
from each distribution. Each data set was censored at the
20th, 40th, 60th, and 80th percentiles of the parent distri-
bution. Parameter estimation methods could then be evalu-
ated for different sample sizes and degrees of censoring.

Parameter estimation methods. Eight methods were evalu-
ated for estimating the mean, standard deviation, median, and
interquartile range of censored data. The reliability and rela-
tive performance of methods was evaluated based on their
root-mean-squared errors (rmses).

Estimation without classification. For each censoring level
and sample size, all data sets from the 16 parent distributions
were combined for computation of rmses for each method and
distribution parameter. Best methods, based on minimum
rmse, were identified for each parameter for every combi-
nation of censoring level and sample size. Rmses of these best
methods for each such combination were evaluated in relation
to the most robust method over all simulation conditions.

Estimation with classification. A goal was to improve
method selection and the accuracy of rmses by classifying data
sets based on attributes of data above the detection limit.
Several sample statistics were computed for each data set and
the one which best indicated the parent distribution was se-
lected. Discriminant analysis by this variable determined cri-
teria for identifying the most probable parent distribution(s) of
a censored data set. All data sets were then classified using
these criteria. Benefits in method selection and improved accu-
racies of rmses were evaluated.

GENERATION OF DATA

In designing the Monte Carlo experiments, a primary goal
was to mimic as closely as possible the types of data that
actually occur for concentrations of trace constituents in
water. Hundreds of uncensored data sets for trace constituents
were evaluated, including visual inspection of shapes and
evaluation of the frequency distributions for the sample coef-
ficients of variation (CV) and skewness. Coefficients of vari-
ation for 482 uncensored data sets (no measured con-
centrations were below the detection limit) for trace elements
at U.S. Geological Survey river quality monitoring stations
ranged from 0.15 to 3.2, with a median of 0.52. For the same
data sets, sample skews ranged from —0.8 to 52 (6% were
negative) with a median of 1.8

Based on the sample properties and the visual inspection of
sample histograms, four parent distributions with positive
skew were chosen: lognormal, contaminated lognormal (mix-
ture of two lognormals), gamma, and delta (lognormal aug-
mented by zeros). Four variants of each distribution were con-
sideted, having CV’s of 0.25, 0.50, 1.0, and 2.0. The resulting
16 parent distributions are herein abbreviated as LN(0.25),
LN(0.50), LN(1.0), LN(2.0), CT(0.25), ---, GM(0.25), ---,
DT(0.25), - - -, DT(2.0). In all cases, the means equaled 1.0. The
density function for each distribution is shown in Figure 1.
The relationships used to generate data from these distri-
butions are summarized below, followed by a brief description
of the sizes and censoring of data sets. All x’s refer to real
space values and all y’s refer to log space values.

Lognormal Distribution

When y = In x is normally distributed with mean p, and
variance oyz, a set of concentrations, x;, i =1, ---, n can be
generated using (1):

X; = CXp (ﬂy + G-ygi) (1)

where ¢ is a randomly chosen value from a normal distri-
bution with a mean of zero and variance of one.

Contaminated Lognormal Distribution

The contaminated lognormal distribution used in this study
consists of a mixture of one predominant lognormal (u,,, o,,),
which describes 80% of the overall population, and a con-
taminant lognormal (u.,, 0,,), which describes 20% of the
overall population. The approach to determining the charac-
teristics of the two subpopulations was to specify proportional
relationships between the parameters of the two distributions,
which would allow unique solutions for their exact parameters
for any overall distribution specified by u, and o,. The con-
ditions imposed were p., = 1.5 .y and 0.,/ = 2.0 0,1/pt,;-
Under these conditions the relationships for u, and o, are
given in the appendix.

Gamma Distribution

Two-parameter gamma distributions, characterized by a
shape parameter, a,, and a scale parameter, f§, were generated
using the International Mathematical and Statistical Libraries
generating routine.

Delta Distribution

The delta distribution is a mixture of a lognormal distri-
bution (u,,, ¢,,) and some portion (p) of zero values. For all
our simulations, the portion of zeros was 5% (p = 0.05). The
mean and standard deviation of the overall distribution were
given by Aitchison [1955].

Sample Sizes and Censoring

Of interest was the effect of censoring on data sets of vary-
ing sample sizes. Therefore three separate simulations were
conducted, with data sets of 10, 25, 50 observations. In each
simulation, 500 data sets were generated from each of the 16
parent distributions. All data sets were censored at four differ-
ent levels (detection limits): the 20th, 40th, 60th, and 80th
percentiles of the parent distributions. Such high percentages
of censoring are common in trace level water quality data.
With this “type I” censoring [ David, 1981], the actual percent-
age of observations censored varied for each data set due to
sample variability. For the gamma distribution with CV = 2.0,
the 20th and 40th percentiles were so close to zero (0.0043 and
0.070) that they were discarded as being unrealistic detection
limits.

We required the condition that at least three observations
be present in each data set after censoring or the data set was
discarded. For n = 10, this eliminated about 1% of data sets
censored at the 40th percentile, about 18% at the 60th percen-
tile, and about 72% at the 80th percentile. Results for censor-
ing at the 80th percentile were therefore not considered mean-
ingful for n = 10. For n = 25, less than 1% of data sets were
eliminated at the 60th percentile censoring level and about
11% at the 80th percentile level. For n = 50, less than 1% of
data sets censored at the 80th percentile were discarded.

PARAMETER ESTIMATION METHODS

There are many possible ways to estimate distributional
parameters of censored data. Among the most commonly ap-
plied are ignoring censored observations, setting all censored
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observations cqual to zero, or setting all censored observa-
tions equal to some fraction of the detection limit, and then
using traditional computational methods. Another approach
is to estimate the missing observations based on an assumed
distribution of data between zero and the detection limit and
then use traditional computational methods. Or, based on an
assumption of the underlying distribution of the entire data
set, maximum likelihood estimates of distributional parame-
ters can be derived from the uncensored observations. In our
experiments we evaluated eight methods for estimating the
population mean, standard deviation, median, and interquarti-
le range, representing all of these approaches. These are listed
below along with their abbreviations used in this report.

1. ZE: censored observations were assumed to equal zero.

2. DL: censored observations were assumed to equal the
detection limit.

3. UN: censored observations were assumed to follow a
uniform distribution between zero and the detection limit.
Thus for the ordered observations x;, i=1, 2, ---, nc and
nc = number of data censored, x; = dl (i — 1)/(nc — 1), a distri-
bution symmetric around one half the detection limit (dl).

4. NR: censored observations were assumed to follow the
zero-to-detection limit portion of a normal distribution which
was fit to the uncensored observations using least squares
regression as follows. “Normal scores,” z, were computed for
each uncensored observation using

z=0"Yr/n+1)

where ® ! is the inverse cumulative normal distribution func-
tion; r is the observation rank (r = nc + 1, -~ -, n); and n is the
sample size for the entire data set. A least squares regression
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of concentration on normal scores for all data above the de-
tection limit was extrapolated to estimate censored observa-
tions (ranks r = 1, - - -, nc). Any estimated values {alling below
zero were set equal to zero.

5. LR: censored observations are assumed to follow the
zero-to-detection limit portion of a lognormal distribution fit
to the uncensored observations by least squares regression.
The method 1s identical to NR, except that concentrations
were log-transformed prior to analysis.

6. NM: concentrations are assumed to be normally dis-
tributed with parameters estimated from the uncensered ob-
servations by the maximum likelihood method for a censored
normal distribution [ Cohen, 19597.

7. LM: concentrations are assumed to be lognormally dis-
tributed with parameters estimated using logarithms of the
uncensored observations in Cohen’s [1959] maximum likeli-
hood method. The mean and standard deviation of the un-
transformed concentrations are then estimated using the equa-
tions given by Aitchison and Brown [1957].

8. DT: censored observations are assumed to be zero and
uncensored observations are assumed to follow a lognormal
distribution. Estimates of parameters of the overall delta dis-
tribution are obtained by computing maximum likelihood es-
timates of parameters of the uncensored lognormal portion
and using relationships between these and the overall delta
distribution described by Aitchison [1955].

The commonly used method of discarding censored obser-
vations prior to calculating parameter estimates was not in-
cluded in this study. Discarding censored observations will
always result in both higher bias and higher rmse than the DI,
method. Because this can never be the most appropriate (mini-
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TABLE 1. Root Mean Squared Errors.(rmses) of Estimation Methods for Data Sets of Size n = 25 in
Percent of True Value
Mean Standard Deviation Median Interquartile Range
Method rmse Method rmse Method rmse Method rmse
Censored at 20th Percentile: 7500 Data Sets
DE 20 UN 42 LM 16 LR 30
LR 20 NR 42 DT 19 M 30
UN 21 LR 42 LR 19 DL 30
NR 21 DL 43 DL 19 NR 34
LM 21 NM 45 UN 19 UN 38
DT 22 ZE 58 NR 19 NM 52
NM 22 LM 76 ZE 19 ZE 138
ZE 23 DT 84 NM 41 DT 143
Censored at 40th Percentile: 7500 Data Sets
LR 20 LR 43 LM 17 LM 30
DL 21 NR 45 DL 18 LR 32
UN 22 DL 47 UN 19 DL 41
LM 22 UN 48 LR 20 NR 57
NR 23 NM 56 NR 30 UN 83
DT 31 ZE 76 ZE 45 NM 110
ZE 32 DT 90 DT 47 ZE 237
NM 42 M 92 NM 52 DT 248
Censored at 60th Percentile: 7994 Data Sets
LR 23 LR 45 M 63 LM 36
UN 25 NR 50 UN 75 LR 40
DL 29 UN 52 DL 87 DL 69
NR 29 DL 53 NR 90 NR 83
DT 45 ZE 80 LR 98 UN 121
ZE 45 NM 82 DT 107 NM 207
LM 79 DT 106 ZE 107 ZE 229
NM 104 LM 108 NM 403 DT 237
Censored at 80th Percentile: 7148 Data Sets
UN 29 LR 48 DT 100 LM 41
LR 30 UN 54 ZE 100 LR 45
LM 31 NR 55 NR 113 NR 94
NR 35 DL 63 LM 141 DL 96
DT 60 ZE 72 LR 201 UN 133
ZE 60 DT 118 UN 229 ZE 138
DL 61 NM 138 DL 369 DT 139
NM 224 LM 1300 NM 1000 NM 366

Methods are ranked by rmse.

mum rmse) method, it was not considered here. The common-
ly used substitution of values equal to one half the detection
limit was also not included, due to its similarity to the UN
method. These two methods will produce identical estimates
for the mean, while a range in values between zero and the
detection limit should produce better estimates of the other
three parameters than substituting a single, arbitrary value for
all censored data.

The evaluation of the reliability of estimation methods was
based on rmses computed from actual parameters of the un-
derlying distribution. Rmses for each parameter were com-
puted for each estimation method and for each parent distri-
bution. Deviations between the parameter values estimated
from each censored data set and those of the underlying distri-
bution were divided by the true population values to express
rmses as fractions of the true values. For example, the equa-
tion for the rmse of the mean is

rmse = [i <&5E>2 / N]”2 2

where x; is the estimate of the mean for the ith of N data sets.
We also computed the bias portion of the rmse and the stan-
dard error of the rmse, which describes the reliability of our
rmse estimates.

ESTIMATION WITHOUT CLASSIFICATION

Simulation results without classification of data sets are
given in Table 1 for data sets of size n =25 to show the
typical pattern of results for all parameter estimation methods.
Though rmses are higher and lower for n = 10 and n = 50,
respectively, the same estimation methods always perform well
for a particular combination of censoring level and distri-
butional parameter.

There are several ways to approach identifying the “best”
estimation method(s) from results such as those in Table 1.
One approach would be to designate a best method for every
single combination of censoring level, parameter, and sample
size. Alternatively, a single robust method could be chosen
that works well over the entire range of conditions simulated.
Figure 2 illustrates these two method selection approaches.
The best overall method was chosen by summing the ranks of
rmses for each method over all sample sizes, censoring levels,
and parameters. The method with the smallest sum of ranks,
LR, was considered best. Rmses for LR are shown for all
parameters in Figure 2, along with those for any other meth-
ods having rmses significantly (x = 0.05) lower than that of
LR. Little reduction in rmse for the mean and standard devi-
ation is accomplished by considering different sample sizes
and censoring levels separately. The rmses of LR are lowest,
or not significantly different than the lowest, in virtually every
situation.
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For the median and interquartile range, on the other hand,
significant reductions in rmse can be achieved by using the
best method for a particular set of conditions rather than
using LR for all (Figure 2). The largest reductions in rmse
occur for small sample sizes and high censoring. For all but
four combinations of censoring level and sample size, the best
method for estimating the median and interquartile range is
LM. For the interquartile range at 20% censoring, LM 1s tied
with LR for n =25 and n = 50. For the median at 80% cen-
soring and n = 25 and » = 50, LM is a close second to NR.
For this latter case, DT and ZE results are ignored. These
methods produced zero as the estimate of the median for
every data set, merely an obvious lower bound. The resulting
100% bias and rmse are totally uninformative.

Figure 2, while showing the extremes of method selection
approaches, suggests an effective third course: selecting LR for
the mean and standard deviation and LM for the median and
interquartile range. In fact, LR has the lowest sum of ranks
(lowest rank with lowest rmse) of any method for the mean

w B

; 100 T - 1

B STANDARD

u DEVIATION

o

~

w 80— I

8}

=

=g

20)

]

i

o 60—

2 710 e

é B ﬁiU’N /
=25 —

T a0 | e ]

[ n:=50 R

w

[

<

)

o]

@20 -

=z

-

5

o 0 Li - | ! I

“ o 20 40 60 80

POPULATION PERCENTILE OF CENSORING LEVEL

Fig. 2. (continued)

f [ f
MEDIAN

180 — -

ROOT MEAN SQUARED. ERROR, AS PERCENT OF TRUE VALUE

o] 20 40 60 80

POPULATION PERCENTILE OF CENSORING LEVEL

Fig. 2. (continued)

and standard deviation over all censoring levels and sample
sizes while LM has the lowest sum of ranks for the median
and interquartile range. Little reduction in rmse is accom-
plished by using other methods for differing sample sizes or
censoring levels.

The LM method has been noted in Table 1 to produce
some crratically high estimates of the mean and standard devi-
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percentile.

ation, particularly for higher censoring levels. This occurred
for the same data sets for which LM generally produced the
best estimates of the median and interquartile range. Figure 3
shows an example of the estimated probability distributions
produced by the LM and LR methods, compared to the
parent distribution for one data set generated from GM (2.0).
The data set of 25 observations was censored at the 60th

B

percentile. Figure 3 illustrates that the LM method produced
an estimated distribution that more closely mimics the parent
distribution than the LR method. This results in accurate esti-
mates of percentiles. To do this, however, the mean and stan-
dard deviation were grossly overestimated at 4.7 and 453, re-
spectively. The LR method, though not mimicking the shape
of the parent distribution, produced accurate estimates of the
mean (1.09) and standard deviation (2.10). Because the LR,
NR, and UN methods involve simply calculating sample pa-
rameter statistics after estimating censored observations, they
rarely produce wild estimates of distributional parameters.

The delta estimator (DT) was recommended by Owen and
DeRouen [1980] for estimates of the mean in comparison to
the LM method. However, their percent of data censored was
known (type II censoring) and never exceeded 25%. With type
I censoring at the 20th percentile, DT and LM give identical
results (Table 1) for the mean, though not for other parame-
ters or censoring levels. Both DT and LM are sensitive to
extreme values at these small sample sizes, and therefore have
higher errors than does LR.

EsT1IMATION WITH CLASSIFICATION

Rankings and rmses were previously presented in Table 1
with all 16 parent distributions equally represented. If the
parent distribution were known, however, the other 15 could
be ignored, with the resulting method ranking and rmse mag-

TABLE 2. Rmses for Data Sets of Size n = 25 From Four Lognormal Parent Distributions Censored
at the 80th Percentile in Percent of True Value
Mean Standard Deviation Median Interquartile Range
Method rmse Method rmse Method rmse Method rmse
LN (0.25) n =443
LM 9 LM 32 LM i1 LM 30
LR 12 LR 36 LR 15 LR 34
NM 17 NM 62 NM 17 NM 66
NR 22 DL 63 UN 22 NR 81
DL 23 NR 64 DL 23 DL 97
UN 24 UN 84 NR 26 UN 133
ZE 71 DT 97 ZE 100 ZE 168
DT 71 ZE 127 DT 100 DT 169
LN (0.50) n = 450
UN 13 UN 30 UN 10 LM 25
LM 14 LR 36 LM 21 LR 27
LR 20 LM 41 LR 29 UN 48
NR 33 NR 47 DL 49 NR 73
DL 43 ZE 55 NR 56 DL 97
ZE 64 DL 57 NM 65 ZE 112
DT 64 DT 90 ZE 100 DT 113
NM 64 NM 112 DT 100 NM 139
LN (1.0) n = 458
UN 20 UN 39 UN 33 UN 22
LM 22 ZE 42 LM 36 LM 29
LR 29 NR 44 LR 53 LR 32
NR 37 LR .47 NR 85 NR 72
ZE 52 DL 58 ZE 100 DL 95
DT 53 LM 75 DT 100 ZE 101
DL 67 DT 87 DL 101 DT 103
NM 178 NM 158 NM 225 NM 294
LN (20) n =457
UN 39 ZE 53 LM 57 UN 29
LR 39 NR 53 LR 84 LM 40
NR 42 UN 56 UN 90 LR 43
LM 47 LR 57 NR 100 NR 84
DT 48 DL 65 ZE 100 DL 94
ZE 49 DT 125 DT 100 ZE 101
DL 77 NM 156 DL 191 DT 103
NM 366 LM 866 NM 734 NM 620

Methods are ranked by rmse.
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TABLE 3. Groups of Parent Distributions for Which Best Performing Methods and Their rmses Were

Similar
Population
Percentile
of Censoring Group Group Group Group Group Group
Level 1 I 131 v ' A1
20 LN(0.25) LN(0.50) LN(1.0) LN(2.0)
GM(0.25) GM(0.50) GM(1.0) DT(2.0)
DT(0.25) DT(0.50) DT(1.0) CT(2.0)
CT(0.25) CT(0.50) CT(1.0)
40 LN(0.25) LN(0.50) LN(1.0) LN(2.0)
GM(0.25) GM(0.50) GM(1.0) DT(2.0)
DT(0.25) DT(0.50) DT(1.0) CT(2.0)
CT(0.25) CT(0.50) CT(L.0)
60 LN(0.25) CT(0.25) LN(0.50) LN(L0) LN(2.0) GM(2.0)
GM(0.25) GM(0.50) GM(1.0) DT(2.0)
DT(0.25) DT(0.50) DT(1.0) CT(2.0)
CT(0.50) CT(1.0)
80 LN(0.25) CT(0.25) LN(0.50) LN(1.0) LN(2.0) GM(2.0)
GM(0.25) GM(0.50) GM(1.0) DT(2.0)
DT(0.25) DT(0.50) DT(1.0) CT(2.0)
CT(0.50) CT(L.0)
LN, lognormal; CT, contaminated lognormal; DT, delta; GM, gamma.
nitudes possibly quite different than Table 1. For example, Quartile estimate of skew
Table 2 separately presents rmses for data sets from each of
the four lognormal distributions. All data sets consisted of 25 = g3 — 29, + 4,
observations and were censored at the 80th percentile. For a # qs — 4
lognormal distribution with CV = 0.25, the lowest ranked esti-
mation method (LLM) for the mean has an rmse of 9%, while ) )
for CV = 2.0 it is either the UN or LR methods with an rmse  Relative quartile range
of 39% (Table 2). Table 1, on the other hand, shows that over
all 16 distributions the UN method is ranked lowest for esti- rqr = 95— 4
mating the mean, with an rmse of 29%. Therefore if the parent d
distribution of a data set could be inferred from attributes of
data above the detection limit, improved method selection and ~ Where
estlmates .of rmse magnitude should result. This i1s the goal of k number of uncensored observations;
classification. o x; individual observation in data set;
Note that if the true distribution were LN (2.0), the rmse of _ L
R . . x, sample mean of uncensored observations;
39% would be greater than that estimated in Table 1, and yet .
. s, sample standard deviation of uncensored
would be more accurate, because Table 1 incorporates rmses . .
from the lower error distributions observations;
: ) qi, 42, 93 25th, 50th, and 75th sample percentiles of

Selection of Class Boundaries

To define class boundaries for estimation method selection,
the following procedure was repeated for each of the four
censoring levels.

1. The performance of parameter estimation methods was
evaluated separately for data sets (n = 25) from each of the 16
parent distributions at each censoring level. For each censor-
ing level, individual parent distributions with similar best per-
forming estimation methods and similar rmses were grouped
together. These groups of similar distributions, which reflect
the dominant effect of population coefficient of variation on
estimation error, are given in Table 3.

2. Four dimensionless sample statistics were computed
from the data above the detection limit for all simulated data
sets. These sample statistics were

Coefficient of skewness

1 k
L Xy

g=

Coefficient of variation

uncensored observations;
d detection limit

3. The effectiveness of these four statistics for classifying
each data set into the correct group of parent distributions
was evaluated using box plots of the distribution of each
sample statistic for each group. The most effective statistic was
the relative quartile range (rqr), a measure of the dispersion of
data above the detection limit relative to the magnitude of the
detection limit. Box plots of rqr for data sets from each group
of parent distributions are shown in Figure 4.

4. The best separation between groups, based on rgr at
sample size 50, was evaluated using pairwise discriminant
analysis. A lognormal distribution of rgr’s was assumed, due
to the asymmetry of the box plots, and the probability density
function equations for each consecutive group pair were
solved. The point at which two densities were equal was the
optimum point of separation. Each density was weighted by
the number of data sets per group. When no solution oc-
curred, the two groups could not be distinguished by rgr (for
example, groups 11 and III for censoring at the 80th percen-
tile). The resulting class boundaries are also shown in Figure
4. Note that, since some distribution groups could not be
discriminated, some rqr classes represent two predominant
distribution groups.
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Fig. 4. Box plots of the relative quartile range for N data sets (Sample size = 50) from each group of parent distributions
(Table 3) and class boundaries determined by discriminant analysis.

Benefits of Classification

The 500 data sets for each of the 16 parent distributions
were censored at the four levels, and then classified using the
class boundaries developed by discriminant analysis. Figure 5
shows the success of classifying data sets into the group con-
taining their parent distribution. A decrease in classification
success with decreasing sample size and increasing censoring

level is evident. This reflects the smaller amount of infor-
mation contained in small data sets and the loss of infor-
mation due to censoring. The class boundaries determined by
discriminant analysis of rgr for data sets of 50 observations
(and shown in Figure 4) are superior or equal to those deter-
mined from data sets of 25 observations, with only one excep-
tion. This is not surprising, as more information is present at
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Fig. 5. Success of data set classification.

the larger sample size. Class boundaries from data sets of 10
observations were much less effective than either of the two
shown in Figure 5. Therefore the boundaries determined from
50-observation data sets were used in all subsequent classifi-
cations.

METHOD SELECTION

The best estimation method was determined for each com-
bination of sample size, censoring level, and rgr class. In light
of the results without classification, best methods for the mean
and standard deviation were determined separately from those
for the median and interquartile range. The best method was
that which minimized the ranks of rmses across the two distri-
butional parameters being considered. If additional methods
had rmses not significantly different (¢ test at « = 0.05) from
the best for both parameters, these were also included as
“best.” Finally, a single best method over all three sample sizes
was selected for each rgr class; results are given in Table 4.
The single best method was often the only method that quali-
fied for best for all three sample sizes. Where more than one
method qualified or where none was best over all sample sizes,
the method which minimized the sum of squared rmses over
the three sample sizes was selected.

The classification system shown in Table 4 sometimes re-
sults in different method selection than that obtained without
classification and shown in table 1. The LM method remains
the best method for the median and interquartile range for all
rgr classes. However, whereas results without classification in-
dicated that the LR method was generally best for the mean
and standard deviation, results in Table 4 show that these
distributional parameters are often best estimated by the LM,
UN, or NR methods.

Table 5 compares rmses of the best methods for x and s for
each rgr class (from Table 4) to the corresponding rmses of
LR, the best overall method without classification. This com-
parison shows that in most instances there is no significant
difference (a = 0.05) between the rmse of LR compared to the
rmse of the best method chosen according to the criteria de-
scribed. Even where differences are statistically significant,
they are not large. In contrast, neither LM, UN, nor NR are

TABLE 4. Rmses of Best Estimation Methods When Classified by Rgr in Percent of True Value

Censored at
20th Percentile

Censored at
40th Percentile

Censored at
80th Percentile

Censored at
60th Percentile

X S m igr X N m iqr X s m igr X s m iqr.
Rgr < 047 Rgr < 0.35 Rgr < 0.25 Rgr < 0.16
Best methods LM LM LM LM LM LM LM LM
n=10 11 43 10 37 13 65 9 39 10 51 14 42
n=25 6 35 5 26 7 36 6 27 8 40 8 30 12 48 22 39
n =50 4 32 4 18 5 33 4 23 6 36 5 26 9 44 22 32
Rgr = 047-1.2 Rqr = 0.35-0.84 Rgr = 0.25-0.60 Rgr = 0.16-0.41
Best methods LM LM LM LM M LM LR LM
n=10 19 40 17 38 20 44 18 39 18 45 27 43
n=25 11 25 10 25 12 28 11 26 14 33 15 35 24 42 82 44
n=>50 7 19 7 18 8 20 8 20 9 23 10 34 18 31 39 44
Rgr=12-38 Rgr = 0.84-2.1 Rgr=006-14 Rqr = 041-0.92
Best methods  UN LM UN LM UN LM UN LM
n=10 32 56 26 45 29 53 28 44 26 52 63 46
n=25 23 47 19 31 22 43 20 29 21 46 27 33 20 46 150 43
n =50 16 36 13 23 15 35 14 21 15 35 17 23 17 42 94 38
Rgr > 3.8 Rgr > 2.1 Rqr =14-37 Rgr > 092
Best methods NR M NR LM UN LM LR LM
n=10 54 65 37 77 60 73 46 81 47 64 130 70
n=25 34 52 25 40 35 57 27 41 31 54 77 38 44 56 240 37
n=50 25 49 18 26 26 51 19 28 25 50 46 28 32 48 200 28
Rqr > 3.7
Best methods NR LM
n=10 85 94 240 110
n=25 45 53 200 57
n=50 30 43 170 39
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TABLE 5. Rmses of Best Method Compared to rmses of LR for the Mean and Standard Deviation in
Each rgr Class
Censored at Censored at Censored at Censored at
20th Percentile 40th Percentile 60th Percentile 80th Percentile
x N x s X N x N
Rgr < 047 Rgr < 0.35 Rgr < 0.25 Rqr < 0.16
Method LM/LR LM/LR LM/LR LM/LR
n=10 11/11 *43/48 13/13 65/52 *10/13 *51/56
n =25 6/6 *35/37 1 *36/39 *8/9 *40/43 *12/19 48/50
n=>50 4/4 32/33 5/5 33/35 6/7 36/37 *9/12 44/43
Rqr = 047-1.2 Rgr = 0.35-0.84 Ryqr = 0.25-0.60 Rqr = 0.16-0.41
Method LM/LR LM/LR LM/LR LR
n=10 19/20 40/43 20/21 44/45 *18/21 45/47 )
n =25 11/11 *25/32 12/12 *28/34 *14/16 *33/38 24 42
n=50 7/7 *19/22 8/8 *20/25 *9/10 *23/29 18 31
Rgr = 1.2-38 Rgr = 0.84-2.1 Rgr = 0.60-1.4 Rgr = 041-0.92
Method UN/LR UN/LR UN/LR UN/LR
n=10 32/32 56/57 29/30 50/55 *26/31 52/53
n=25 23/22 47/47 22/21 43/44 21723 46/46 *20/29 46/45
n=>50 16/16 36/37 15/15 35/36 15/15 35/36 *17/22 42/40
Rgr > 38 Rgr > 2.1 Rqgr = 14-3.7 Rgr > 092
Method NR/LR NR/LR UN/LR LR
n=10 54/55 65/65 60/62 73/73 47/51 64/65
n=25 34/34 52/53 35/35 57/57 31/31 54/54 44 56
n =50 25/25 49/49 26/26 51/51 25/25 50/50 32 48
Rqr > 3.7
Method NR/LR
n=10 85/93 94/93
n=25 45/50 53/53
n=50 30/33 43/43

*Significant difference at o = 0.05.

similarly robust over all rgr classes. For example, Table 5
indicates that LM has a significantly lower rmse than LR for
both the mean and standard deviation at the 60th percentile
censoring level and rgr = 0.25-0.60 (n = 25). Yet LM is the
worst method in the next highest rgr class (rgr = 0.60-1.4) for

both the mean and standard deviation, with rmses over 100%
of the true value for standard deviation.

When applying parameter estimation methods to actual
water quality data, an important consideration is method ro-
bustness. Given the possibility of misclassifying individual

TABLE 6. Rmses When All Data Sets (n = 25) are Classified Correctly by Distribution Group (Perfect) as Compared to Results of Actual
Classification from Tables 4 and 5

Censored at
20th Percentile

Censored at
40th Percentile

Censored at
80th Percentile

Censored at
60th Percentile

x s m iqr x N m igr X s m igr x s m iqr
Rgr < 047 Rgr < 0.35 Rgr < 0.25 Rgr < 0.16
Method LR LM LR LM LR LM LR LM
Perfect 5 36 4 25 6 38 4 28 7 41 6 26 5 30 4 29
Actual 6 37 3 26 7 39 6 27 9 43 8 30 19 50 22 39
Rgr =047-1.2 Rgr = 0.35-0.84 Rgr = 0.25-0.60 Rgr = 0.16-041
Method LR LM LR LM LR LM LR LM
Perfect 10 29 10 25 10 31 11 25 14 33 14 27 22 39 23 29
Actual 11 32 10 25 12 34 11 26 16 38 15 35 24 42 82 44
Rgr =12-38 Rgr = 0.84-2.1 Rgr = 0.60-14 Rgr = 041-0.92
Method LR LM LR M LR LM LR M
Perfect 20 47 19 30 20 44 20 30 22 46 23 30 30 48 38 24
Actual 22 47 19 31 21 44 20 29 23 46 27 33 29 45 150 43
Rgr > 3.8 Rgr > 2.1 Rqr = 14-3.7 Rqr > 092
Method LR LM LR LM LR LM LR LM
Perfect 36 60 25 41 36 60 27 41 36 61 33 40 39 61 55 35
Actual 34 53 25 40 35 57 27 41 31 54 77 38 44 56 240 37
Rqr > 3.7

Method LR LM
Perfect 58 43 240 41
Actual 50 53 200 57

Rmses are in percent of true value.



GILLIOM AND HELSEL: ESTIMATION OF CENSORED WATER QUALITY DATA 145

250

correctly ciassified

I 95-percent confidence interval
of BMSE for all data sets falling
in the rar class corresponding to
each distripution group

no

o

o
f

« RMSE when all data sets are :|:

5-percent confidence interval of
RMSE for all data sets combined ]
and no classification

-

o

<o
I

>
o
I
I

RMSE, AS PERCENTAGE OF TRUE VALUE

e

rs

*H

I i T v A pus
DISTRIBUTION GROUP

Fig. 6. Comparison of rmses with and without classification for
estimates of the median from data sets of n = 25 censored at the 60th
population percentile.

data sets (Figure 5), and the small increases in rmse when LR
is used for any rgr class, the use of the more robust LR
method is best for making low-risk estimates of the mean and
standard deviation for all data sets.

ACCURACY OF RMSES

Though the classification system does not, in practice, alter
method selection compared to results with no classification, it
does result in superior estimates of error (rmse), by consider-
ing differences due to the probable parent distribution. Table
2 showed that rmses vary considerably between data sets from
different parent distributions. The classification system was
designed to indicate the types of parent distributions from
which each data set may have originated, and therefore yield
more accurate estimates of error (whether higher or lower)
than the average rmse for all data sets from all 16 parent
distributions, such as given in Table 1.

Table 6 shows rmses for the best parameter estimation
methods (LR for x and s, LM for m and igr) for data sefs only
from parent distributions intended to be included in each rgr
class (Table 2 and Figure 4). These rmses represent the reli-
ability of parameter estimates if each data set were correctly
classified according to its parent distribution. Also shown in
Table 6 for comparison are the previously reported rmses for
data sets actually falling in each rgr class during the simula-
tion with all 16 parent distributions (from Table 5 for X and s
by the LR method, and Table 4 for m and igr by the LM
method).

Table 6 shows that the rgr classification system results in
rmses which are very similar to the best estimate of true rmse,
that of perfect classification. Only at 80th percentile censoring
do the rmse values substantially depart from truth. This re-
flects the greater inability to correctly classify highly censored
data sets previously illustrated in Figure 5. Even at 80th per-
centile censoring, however, rgr classification generally im-
proves the accuracy of rmse estimates over those with no
classification.

To illustrate the improvement in rmse accuracy following
classification, the data for 60th percentile censoring (n = 25) is
plotted in Figure 6. Shown in the figure are the rmses for
perfect classification into parent distribution group, those for

the actual classification according to rgr, and the rmse without
classification. When data sets are classified, more reliable rmse
estimates are obtained.

CONCLUSIONS

The most robust estimation method for minimizing errors
in estimates of the mean, standard deviation, median, and
interquartile range of censored data was the log probability
regression method (LR). This method is based on the assump-
tion that censored observations follow the zero-to-censoring
level portion of a lognormal distribution obtained by a least
squares regression between logarithms of uncensored con-
centration observations and their normal scores.

When method performance was evaluated separately f{os
each distributional parameter, LR resulted in the lowest rmses
for the mean and standard deviation. The lognormal maxi-
mum likelihood estimator for censored data (LM) produced
lowest rmses for the median and interquartile range. These
two methods constitute the best procedures for their respective
parameters.

Using the relative quartile range (rgr), the interquartile
range of uncensored obscrvations divided by the detection
limit, censored data sets can be classified into groups reflecting
their probable parent distribution. Within these rqr groups,
the accuracy of rmses substantially improved over those with-
out classification.

These findings appear to have great potential for improving
estimation of distributional parameters from censored water
quality data sets. However, to apply the results of these Monte
Carlo experiments to censored trace water-quality data, sev-
eral assumptions are required. In addition, the rgr classifi-
cation system and rmses necd to be verified with actual water
quality data sets. These issues are addressed in detail in a
companion paper [ Helsel and Gilliom, this issue].

APPENDIX: EQUATIONS FOR THE CONTAMINATED
LOGNORMAL DISTRIBUTION

Py = (1 = P)itey + Plica (A1)
2 ~ 1/2
6. — 1. [C3 (Jxl/:?‘xl) + Cz:| (A2)
o
where

Cy=(1—p+pk?; (A3)

C, = p(1 — p)1 — k)*; (A4)
Cy=1—p+4pk?; (A5)

p percent of population described by the lognormal distri-
bution with p, and o,,;
k ratio of p,ip,,.

Algebraic manipulation of (A1}{A5) leads to the following
relationships for the two individual distributions which make
up the overall contaminated lognormal distribution:

- S
T p—— (A6)
o, 2 c, 172 C, 172
fo— - - 3
x1 #x1[<#A> Cl] <C3> (A7)
Bz = ik (A8)
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(A9)

le
Oxz = 2ftyy =
Hxi

Given the specified conditions of the Monte Carlo simulation
(u; and o,/p,), (A6)-(A9) yield estimates of y,, 0., p,,, and
G2 which are used to generate two lognormal distributions.
To generate data sets from the overall distribution, 80% of
each data set was generated according to u,,, o.,, and 20%
according to p,,, 0,,.
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