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Estimation of Distributional Parameters for
Censored Trace Level Water Quality Data
2. Verification and Applications

DenNis R. HELSEL AND ROBERT J. GILLIOM

U.S. Geological Survey, Reston, Virginia

Estimates of distributional parameters (mean, standard deviation, median, interquartile range) are
often desired for data sets containing censored observations. Eight methods for estimating these parame-
ters have been evaluated by R. J. Gilliom and D. R. Helsel (this issue) using Monte Carlo simulations. To
verify those findings, the same methods are now applied to actual water quality data. The best method
(lowest root-mean-squared error (rmse)) over all parameters, sample sizes, and censoring levels is log
probability regression (LR), the method found best in the Monte Carlo simulations. Best methods for
estimating moment or percentile parameters separately are also identical to the simulations. Reliability of
these estimates can be expressed as confidence intervals using rmse and bias values taken from the
simulation results. Finally, a new simulation study shows that best methods for estimating uncensored
sample statistics from censored data sets are identical to those for estimating population parameters.
Thus this study and the companion study by Gilliom and Helsel form the basis for making the best
possible estimates of either population parameters or sample statistics from censored water quality data,

and for assessments of their reliability.

INTRODUCTION

Water quality data often include observations measured
only as less than the detection limit, resulting in censored data
sets. FEight methods for estimating distributional parameters
for censored water quality data were evaluated by Gilliom and
Helsel [this issue]. Results of extensive Monte Carlo simula-
tions, in which large numbers of small samples were generated
from 16 different parent distributions and censored to varying
degrees, indicated that a log-probability regression method
(LR) was the best method for estimating the mean and stan-
dard deviation of censored data and that a lognormal maxi-
mum likelihood method (LM) was best for estimating the
median and interquartile range. That study, hereafter called
the simulation study, also showed that censored data sets
could be effectively classified using a sample statistic called the
relative quartile range (rgr), which is the interquartile range of
uncensored observations divided by the detection limit. Classi-
fication of simulation data sets according to rgr indicated the
probable underlying distribution, and resulted in improved
estimates of the precision of distributional parameters as com-
pared to unclassified data sets.

The purposes of this study are to (1) verify the findings from
the previous simulation study by evaluating the same parame-
ter estimation methods using actual water-quality data; (2)
describe an approach for estimating confidence bounds
around parameter estimates made from censored water quali-
ty data; and (3) evaluate how well the estimation methods
calculate uncensored sample statistics from censored data sets
and compare their errors to those for estimating population
parameters.

VERIFICATION OF PREVIOUS SIMULATION STUDY

Evaluations of parameter estimation methods in the pre-
vious simulation study are verified by applying the same type
of analysis to actual water quality data. The best performing
parameter estimation methods for actual water quality data
are compared to the simulation study results. The rgr classifi-
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cation system developed in the simulation study is tested by
comparing method performance for actual and simulated data
within each rqr class, and by evaluating the ability of rqr
classification to separate water quality data sets having differ-
ent root mean squared errors (rmses) of parameter estimates.

Approach

Uncensored data sets with more than 50 observations for
suspended sediment, total phosphorus, total Kjeldahl ni-
trogen, and nitrate nitrogen concentrations were obtained
from 313 stations of the U.S. Geological Survey’s National
Stream Quality Accounting Network (NASQAN). Most data
were monthly samples taken during 1974-1981, resulting in
917 data sets having more than 50 observations and no cen-
soring.

Suspended sediment and major nutrients data were ana-
lyzed rather than trace constituents because (1) most available
data sets for trace constituents consisted of less than 30 obser-
vations; (2) most trace constituent data sets contained cen-
sored observations; and (3) suspended sediment and nutrients
are transported by the same types of processes as many trace
constituents.

This last point is important because similarity in transport
process will tend to result in similarly shaped frequency distri-
butions. We examined this assumption by comparing the dis-
tributions of coefficients of variation (CV) and of a measure of
symmetry between subsamples of n = 25 from each of the sed-
iment and nutrient data sets and uncensored trace-constituent
data sets of sizes ranging from n = 20 to n = 40. The measure
of symmetry, ms, was

475 — dsp

950 — 425

ms

(1

where g; is the ith percentile of the data set. The results of the
comparison are shown in Figure 1, which also includes the
same information for simulation study data sets (100 data sets
from each of the 16 parent distributions) of size n = 25. All
three types of data have similar distributions of these non-
dimensional variance and symmetry sample statistics.

For the verification tests, two subsamples, one of size n = 10
and one of n = 25, were randomly selected with replacement
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nator = 0, and are beyond the “maximum?”).

from each of the 917 sediment and nutrient data sets. Each
resulting small sample was censored at 20, 40, 60, and 80% by
the type II method [David, 1981], as population percentiles
were not known. With this method the same fraction of each
data set is censored. Each of the eight parameter estimation
methods evaluated in the simulation study (Table 1) were ap-
plied to each censored sample. Rmses were computed for the
mean, standard deviation, median, and interquartile range.
Sample statistics computed from the original (n > 50) sedi-
ment and nutrient data sets were used as estimates of the true
population parameters in rmse calculations.

Results

Best methods for the verification data, methods with the
lowest rmse or with rmses not significantly (¢ test at « = 0.05)
larger than the lowest, were identical to those of the simula-
tion study. Table 2 presents rmses for data sets of n = 25,
Similar ordering of methods, though with higher rmses, were
found for n = 10.

The best overall method for estimating the mean, standard
deviation, median, and interquartile range of simulated data

TABLE 1. Parameter Estimation Methods
Method Description of Method
ZE Censored observations set to zero.
DL Censored observations set to the detection limit.
UN Censored observations uniformly distributed between
zero and the detection limit.
NR Censored observations followed the zero-to-detection

limit portion of a normatl distribution fit to un-
censored observations by least squares regression,
LR Censored observations followed the zero-to-detection
limit portion of a lognormal distribution fit to
uncensored observations by least squares regression.

NM Maximum likelihood method for censored normal
distributions.

LM Maximum likelihood method for censored normal
distributions using natural logarithms, followed by
Aitchison and Brown [1957] transformation.

DT Delta distribution estimator of Aitchison [1955].

TABLE 2. Root Mean Squared Errors (rmses) of Estimation
Methods for 917 Verification Data Sets of Size n = 25 in Percent
of Uncensored Value

Standard
Deviation

Interquartile

Mean Median Range

Method Rmse Method Rmse Method Rmse Method Rmse

20% Censored

NM 23 UN 41 LR 20 LR 47
DT 25 NR 41 UN 20 UN 47
LR 26 LR 42 ZE 20 ZE 47
DL 26 DL 42 DL 20 DL 47
UN 26 ZE 45 NR 20 NM 47
NR 26 NM 45 LM 20 M 47
ZE 27 LM 84 DT 25 NR 47
LM 33 DT * NM 173 DT 59
40% Censored
LR 26 UN 42 LM 18 LM 50
UN 27 LR 43 LR 20 DL 51
DL 28 NR 44 UN 20 LR 52
NR 28 DL 46 ZE 20 UN 53
DT 32 ZE 55 DL 20 NR 80
ZE 33 NM 56 NR 20 ZE 129
NM 47 LM * DT 21 DT 146
LM 51 DT * NM 527 NM 757
60% Censored
LR 27 UN 44 LM 27 LM 54
UN 29 LR 45 UN 30 LR 56
NR 32 NR 47 LR 37 UN 65
DL 35 DL 52 DL 41 DL 73
ZE 44 ZE 60 NR 64 NR 91
DT 44 NM 79 ZE 100 ZE 129
NM 11t DT * DT 100 DT 144
LM * LM * NM * NM *
80% Censored
UN 36 UN 44 NR 80 LM 72
LR 37 LR 47 ZE 100 UN 85
NR 43 NR 50 DT 100 LR 97
DT 62 ZE 54 LM 124 ZE 100
ZE 62 DL 63 UN 217 DL 100
DL 68 NM 133 LR 262 DT 100
LM 81 DT * DL 358 NR 125
NM 296 LM * NM * NM *

See Gilliom and Helsel {this issue] for further detail.

*Rmse > 1000%.
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TABLE 4. Rank Correlations, r, Between Simulation rmses and
Verification rmses for Each rgr Class

Parameter

Degree of Censoring Standard Interquartile

(As Percentage) Mean  Deviation Median Range
20 0.90* 0.80*
=8 (=8
40 0.90* 0.72% 0.87*
(n=8 (n=8 (n=8)
60 0.95* 0.58 0.55 0.75*
n=10) m=10 ®w=10) (n = 10)
80 0.60 0.95* 0.40 0.40
n=4 (=4 (=4 (@=9
All censoring levels 0.89* 0.71* 0.37 0.63*
combined =30 ®=30 (=14 (n = 22)

*Here r is significantly different from 0.00 at o = 0.05.

had been LR, based on its having the smallest sum of rmse
ranks over all four distributional parameters, four censoring
levels, and three sample sizes. By the same criteria, LR and
UN tied for the best method using verification data. Also
applying the same criteria, but separately for the moment pa-
rameters (mean and standard deviation) and the percentile
parameters (median and interquartile range), LR produced the
lowest summed rmse rank for the moment parameters and
LM for the percentile parameters for both the simulated and
verification data.

Verification sets were then classified by relative quartile
range (rqr), the interquartile range of uncensored observations
divided by the detection limit, and rmses were calculated for
each rgr class. Ranks of method rmses were again separately
summed for the moment and percentile parameters over both
n =10 and n = 25 sample sizes. Although for individual rgqr
classes within a censoring level a method other than LR or
LM might have a smaller rmse, no rmses were significantly (¢
test at o = 0.05) lower than those of LR for the moment pa-
rameters and of LM for the percentile parameters. Therefore
for every rqr class these two methods are either best, or not
significantly different from the best, and no significant re-
duction in error would result from selecting separate methods
for each rgr class. This method selection exactly follows that
of the simulation study.

Rmses using LR and LM are compared for this verlﬁcatlon
study with those of the prior simulation study in Table 3. The
magnitudes of rmses are in most cases quite similar. Of the
130 pairs, t tests showed that 62% of the errors from the
simulation study were not significantly different than errors
when using actual water quality data.

There are several reasons why rmses from the verification
study might not match those of the simulation study. First,
during verification, water quality population values were ap-
proximated by sample estimates from relatively small data sets
{(n > 50). The differences between these estimates and the true
population values introduce errors of unknown direction as
compared with simulation results. Second, the small subsam-
ples of n = 10 or n = 25 represent substantial portions of the
complete data sets, lowering rmses from their true value. As a
result, similarity in magnitude between simulation and ver-
ification rmses may be of limited importance.

Of importance is the similarity in effect of rgr classification
on rmses of simulation and verification data. In order for the
rgr classification to aid in estimating errors, both simulation
and verification rmses should covary, positively, by rgr class,
To measure this, rank carrelation coefficients between simula-
tion and verification rmses were calculated for each parame-
ter. Ranks were first independently assigned for each study

within each sample size and censoring level, and then com-
bined. The results (Table 4) show that the relative magnitudes
of rmses for the simulation and verification data are corre-
lated, except for estimates of the median. Verification rmses
for the median are low in relation to simulation data for the
high censoring and high rgr classes (Table 3). This may be due
to the lack of distributions in the verification data with as
many extreme values as the high cv gamma distributions in-
cluded in the simulation study [see Gilliom and Helsel, this
issue].

The verification results are strong evidence that the pre-
vious simulation study led to optimal choice of estimation
methods for the mean, standard deviation, median, and inter-
quartile range of censored water quality data sets. Fur-
thermore, the verification results show that the rgr classifi-
catipn system developed from simulation studies provides an
effective means of distinguishing between data sets originating
from different types of parent distributions.

CONFIDENCE INTERVALS FOR PARAMETER ESTIMATES

The most common objective in estimating distributional pa-
rameters from censored data is to reproduce the parameters of
the parent distribution; for example, the true mean or median
concentration for a particular river and time period. When
making estimates of population parameters from censored
data, evaluation of the reliability or confidence intervals of
such estimates is an important step.

Estimation of confidence intervals requires estimates of
rmse and bias. We believe that the simulation results yield
more appropriate estimates of rmse and bias than do the ver-
ification results. As was previously discussed, the verification
results are based on imperfect estimates of population values,
and the small subsamples that were censored represent a sub-
stantial portion of the larger sample used to estimate popu-
lation values. Moreover, the simulation studies included a
wide range of distribution types chosen to be similar in shape
to distributions of trace constituent concentrations in water
[Gilliom and Helsel, this issue]. The verification data sets may
not have represented as wide a range in distribution shapes, as
only uncensored data sets were, of necessity, chosen.

The method described below for estimating confidence in-
tervals of population parameters estimated from censored
data requires three assumptions as follows.

1. The censored data are from a population that is equally
likely to be similar in shape to any 1 of 16 parent distributions
used in the simulation study.

2. The percentage of a data set that is censored equals the
population percentile associated with the value of the detec-
tion limit.

3. Relative errors in estimated population parameters, the
error of an estimate divided by the true value, can be approxi-
mated by a log-normal distribution.

The first assumption is that the 16 parent distributions used
in the simulation studies appropriately represent the range
and proportional contributions of different types of distri-
butions of actual trace level water quality data. We feel confi-
dent that the range of possible shapes were included [Gilliom
and Helsel, this issue, Figure 1]. Though there is unresolvable
uncertainty about the true proportional representation of each
type of distribution, the rgr classification system reduces this
potential effect on error estimates by grouping data from simi-
lar distributions.

The assumption that the percentage of a data set that is
censored equals the population percentile of the detection
limit is required in order to select the proper rmse and bias
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TABLE 5. Percentages of Parameter Estimates From Small Censored Samples of Simulated Data That Fell Within Computed Confidence
Intervals
Censored at 20th Censored at 40th Censored at 60th Censored at 80th
Percentile Percentile Percentile Percentile
Method LR LM LR LM LR LM LR LM
X s m igr x H m igr x s m iqr X s m iqr
Rgr < 047 Rgr < 0.35 Rgr < 0.25 Rgr < 0.16
n=10 95 89 95 91 95 87 92 92 94 81 98 91
n=25 96 87 81 93 95 89 95 95 93 89 94 94 95 85 95 92
n =150 95 82 98 94 94 85 95 96 95 85 94 95 94 87 99 94
Rgr = 047-1.2 Rgr = 0.35-0.84 Rgr = 0.25-0.60 Rgr = 0.16-0.41
n=10 93 88 93 92 93 86 94 92 94 86 99 93
n=25 93 94 93 94 94 92 94 95 95 92 %4 95 95 91 99 95
n =50 95 94 94 95 95 94 95 95 94 94 95 95 94 93 99 96
Rgr =1.2-38 Rqgr = 0.84-2.1 Rqr = 0.60-1 4 Rgr = 041-0.92
n=10 93 88 92 93 93 88 94 94 95 89 98 95
n=25 91 93 94 93 94 90 95 93 95 89 94 96 94 91 96 95
n =150 94 93 93 95 94 93 95 94 93 91 94 95 93 92 97 95
Rgr > 38 Rgr > 2.1 Rgr = 1437 Rgr > 092
n=10 98 96 93 97 98 98 95 98 97 98 98 96
n=25 96 95 94 96 96 97 93 95 95 97 96 95 96 98 98 94
n =50 95 96 95 95 95 96 94 95 95 97 96 94 95 97 98 94
Rgr > 3.7
n=10 98 97 99 99
n=25 97 97 98 92
n=>50 96 97 97 88

o = 0.05; therefore percentages should equal 95.

values from simulation results. The simulation results are or-
ganized according to the population percentile representing
the detection limit. The percentage of a data set that is cen-
sored is a sample estimate of the percentile of the detection
limit, and its reliability is dependent primarily on sample size.

The assumption that relative errors are lognormally distrib-
uted was made because some probability distribution of errors
must be specified to construct confidence intervals tighter than
those given by Chebyshev’s inequality. Box plots of errors
suggested a lognormal distribution and such a distribution
appeared reasonable because the fractional error,

e=(X— 1/u

has a Jower bound of — 1.0, while having no upper bound. The
validity of the assumed lognormal distribution of errors was
directly tested by a simulation experiment. Five hundred data
sets of each samiple size; n = 10, n = 25, and n = 50, were
generated from each of the 16 parent distributions described
by Gilliom and Helsel [this issue] and censored at the 20, 40,
60, and 80th population percentiles. Sample estimates for each
data set at each censoring level were made using the LR
method for x and s and LM for m and igr. Confidence inter-
vals for each estimate at @ = 0.05 were computed as described
below, and the actual frequencies with which the true popu-
lation values fell within those intervals were evaluated. Results
in Table 5, based on 1,000-2,000 data sets for most combi-
nations of censoring level, sample size, and rgr class, show that
the assumed lognormal distribution is generally a good ap-
proximation of the error distribution. Only for the standard
deviation for the lowest three rgr classes at each censoring
level and sample size is there a consistent tendency to under-
estimate the width of the confidence intervals.

Under the above assumptions, confidence intervals for esti-
mates of the mean, standard deviation, median, and inter-
quartile range may all be similarly estimated. Derivation of

equations for confidence intervals are given below, using the
mean as an example.
The fractional errors for estimates of the mean
e, =t @
u

where ¥, is the estimate of the mean for the ith data set and u
is the true population mean, are assumed to be lognormally
distributed with mean p,, variance ¢,2, and lower limit of
— 1.0. The expected value u, = E[e;] = b, where b is the frac-
tional bias of estimates from the censored samples of the simu-

lation study, is
N X —
b=y X E / N
i=1 M

and N is the number of data sets used in the simulation. The
variance o, is calculated as

3

6,* = rmse? — b? 4)
where rmse values are again those from the simulation.
N /& 2
X
rmse? = Y ( : ﬂ) /N 5
i=1 H

The values of y; = In {(¢; + 1.0) are normally distributed, with

)
6,2 =In (1.0 ¥ @‘:—i)z> (6)
and
p,=In (b + 1.0} — 0.5¢,% )]
A (1 — o) confidence interval for u is thereforé given by
Xexp [—p, ~ 20l S p < xexp [—p, + z,,0,] (8)

where z is the standard normal variate.
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TABLE 6. Bias of Best Estimation Methods as Percentage of True Value

Censored at 20th Censored at 40th

Censored at 60th Censored at 80th

Percentile Percentile Percentile Percentile
Method LR LM LR LM LR LM LR LM
x s m igr x s m iqr x s m iqr x s m iqr
Rgr <047 Rgr < 0.35 Rgr < 0.25 Rqr < 0.16
n=10 -3 =34 ~3 -13 —2 —39 -2 -13 4 —46 5 -13
n=25 0 =21 0 —10 -1 -22 -1 —4 -1 —28 -1 -5 9 -39 8 —14
n =50 0 -17 0 —1 0 —17 -1 4 0 -23 -1 1 3 —-32 2 -9
Rqgr ~ 047-1.2 Rgr = 0.35-0.84 Rgr = 0.25-0.60 Rgr = 0.16-041
n=10 ~5 =23 -5 -6 -5 -23 -2 -5 1 —23 10 0
n=25 -1 -1 -2 -7 -1 —10 -1 -3 -3 -10 -1 1 3 —-12 18 S
n=>50 0 -7 -2 —1 -1 -6 -1 1 -3 -3 -2 9 -3 -5 3 8
Rgr = 1.2-38 Rgr = 084-2.1 Rgr = 0.60-14 Rgr = 041-092
n=10 -8 =29 -7 —4 -4 —29 0 -1 4 ~25 24 7
n=25 —4 -18 —4 -9 —4 —20 -2 -9 -3 -17 2 —4 1 -9 43 8
n =50 —2 —12 -3 -3 -2 —13 -2 —4 -2 —12 1 -2 -3 —17 19 5
Rgr > 38 Rgr > 2.1 Rgr = 14-3.7 Rgr > 092
n=10 15 -16 2 35 23 -6 10 37 17 —-13 56 30
n=25 7 —16 0 10 9 —12 1 10 4 —12 19 2 15 8 90 7
n =50 5 —10 -3 6 7 -9 —1 7 4 -9 7 2 7 0 78 -2
Rgr > 3.7
n=10 58 31 130 51
n =25 25 7 130 4
n =50 130 7

12 2

To calculate confidence intervals, p, and o, are obtained
from (6) and (7). The bias, b, from the simulation study is
reported in Table 6. The error variance o, is calculated in (4)
using both bias from Table 6 and rmse from the simulation
results reported in Table 3. The smaller rmses following classi-
fication by rgr, as found in the simulation study, allow shorter
confidence intervals on parameter estimates than would be
possible without rgr classification. Equation (8) can be used
for any of the four distributional parameters estimatéd, with g

and x replaced by the population parameter and sampie esti-
mate for the standard deviation, median, or interquartile
range.

The above procedure is iliustrated by example in the appen-
dix, where a 95% confidence interval for the mean is calcu-
lated. Note that neither the sample size nor the percentage of
the data censored exactly correspond to conditions repre-
sented in Tablés 3 and 6; this will usually be the case. One can
use the rmse and bias values for the closest censoring and

TABLE 7. Rmses of Best Estimation Methods When Classified by rgr as Percentage of Uncensored Sample Estimate

20% Censoring 40% Censoring

60% Censoring 80% Censoring

Method LR LM LR LM LR LM LR LM
x s m igr X s m iqr x s m igr % s m iqr
Rgr < 047 Rgr < 0.35 Rqr < 0.25 Rgr < 0.16
n =10 4 25 7 31 38 14 44 10 46 * * * *
n=25 4 27 5 29 28 8 35 5 36 21 39 66 50
n=>50 3 28 4 31 21 6 35 3 27 11 40 14 34
Rgr = 047-1.2 Rgr = 0.35-0.84 Rgr = 0.25-0.60 Rgr = 0.16-041
n=10 3 10 1 14 22 15 27 16 43 * * *
n=25 2 7 5 10 17 10 18 12 42 24 25 130 61
n =50 2 6 4 8 13 8 17 7 34 16 23 28 50
Rgr =12-38 Rgr = 0.84-2.1 Rgr = 0.60-14 Rgr = 041-0.92
n=10 3 5 6 8 18 14 14 54 43 * * * *
n=25 2 3 4 5 11 10 9 26 27 23 19 180 66
n=>50 1 2 3 4 8 7 6 13 16 19 17 73 47
Rgr > 3.8 Rgr > 2.1 Rqr =14-3.7 Rgr > 0.92

n=10 2 2 4 3 12 11 7 380 30 * * * *

=25 1 1 3 2 7 7 4 44 14 18 6 170 38
n=50 1 1 2 2 5 6 3 27 10 16 5 150 20

Rgr > 3.7

n =10 7 3 290 27
n =25 5 2 92 11
n = 50 5 2 64 7

*QOnly 2 samples remain after censoring,.
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TABLE 8. Bias When Estimating Sample Statistics as Percentage of the Uncensored Sample Estimate

20% Censoring 40% Censoring 60% Censoring 80% Censoring
Method LR LM LR LM LR LM LR LM

X s m iqr X s m iqr X s m iqr x s m iqr
Rgr < 047 Rgr < 0.35 Rgr < 0.25 Rgr < 0.16

n=10 1 -9 2 —11 4 7 —23 4 - 16 * * * *
n =25 1 -11 0 -9 9 —-14 1 3 7 -18 17 —6
n=>50 1 —-12 0 —10 6 1 -16 0 1 5 -27 5 —13

Rygr = 047-1.2 Rgr = 0.35-0.84 Rgr = 0.25-0.60 Rgr = 0.16-0.41
n=10 1 -3 2 —4 0 3 0 5 6 * * * *
n=25 1 -3 1 -2 3 0 1 2 9 3 2 28 14
n =50 1 -3 0 -2 1 -2 3 0 10 -1 5 6 12

Rgr=12-38 Rgr = 0.84-2.1 Rgr = 0.60-14 Rgr = 041-0.92
n=10 1 -2 1 -2 0 1 0 11 2 * * * *
n=25 1 —1 1 —1 1 1 —1 3 8 -2 5 40 21
n =50 0 -1 1 -1 -1 1 —1 3 -1 -1 3 17 10

Rgr > 3.8 Rgr > 2.1 Rgr = 14-3.7 Rgr > 0.92
n=10 0 —1 0 0 2 —3 2 21 6 * * * *
n=25 0 -1 0 0 2 0 0 6 5 —6 2 44 16
n=50 0 0 0 —1 0 0 0 5 0 -1 0 41 3
Rgr > 3.7

n=10 -3 1 37 9
n=25 1 0 58 1
n =50 3 —1 32 -3

*QOnly 2 samples remain after censoring.

sample size represented in the table, interpolate, or choose
conservatively high rmses by using values for the next highest
censoring level and next smallest sample size.

SAMPLE STATISTICS: ESTIMATION AND CONFIDENCE
INTERVALS

For some applications, estimates of sample statistics rather
than population parameters might be desired from censored
data. Uncensored water quality data are summarized by their
sample statistics, and comparisons between these data and
censored data should be on an equal basis.

New Simulation Study

To determine how well the eight methods evaluated by Gil-
liom and Helsel [this issue] estimate sample statistics, a new
simulation study was performed. Distributional shapes and
other criteria are identical to the previous simulation study.
However, rmses and bias were calculated (using the mean for

example) as:
%= %o\ 17
Xo
N s
bias = Y, (x, — xO)/N
i=1 Xo

where X, is the sample mean for the uncensored data set
(replacing u), and the other parameters are as previously
given. Censoring was at the 20, 40, 60, and 80th percentiles of
each simulated sample (type II censoring), as opposed to per-
centiles of the parent population in the first simulation study
(type 1 censoring). This was to facilitate comparison with the
verification results.

Best methods for the moment and percentile parameters in
this new simulation study were LR and LM, respectively,
based on the sum of method rankings over all censoring levels.
The overall best method was LR. Best performing methods for

i=1

- N
rmseztz
1

estimating sample statistics were thus identical to those for
estimating population parameters. However, the magnitudes
of rmses differ from those for population parameters. Rmses of
sample estimates in Table 7 can be compared to those of the
n = 10 and n = 25 population parameters presented above the
slashes in Table 3. Rmses are generally smaller when esti-
mating sample statistics. Therefore confidence intervals
around the LR or LM estimate are smaller for inclusion of the
uncensored sample statistic as compared to the population
parameter. Rmses for the moment sample statistics decrease
with increasing rqr class, the opposite trend from that of the
population parameters. This is due to the greater influence of
the higher observations on the sample mean and standard
deviation. These higher observations remain after censoring,
producing a more accurately estimated sample statistic while
indicating much less about the population parameter. Confi-
dence intervals for sample statistics can be computed using the
same relationships given for population parameters, but using
the rmses in Table 7 and the bias results in Table 8.

Verification of Sample Statistic Estimates

To verify the new simulation results, uncensored trace metal
data sets from the NASQAN network were censored (type II)
at the 20, 40, 60, and 80th sample percentiles and errors were
calculated by comparison to the uncensored sample estimates.
Table 9 lists the water quality parameters chosen and the
number of data sets for each. Sample sizes ranged from 10 to
40 observations. Eleven other trace constituents had no data
sets which contained only uncensored observations and were
not used. In order to obtain a larger number of data sets, iron
and manganese data were included even though they are not
usually found at “trace” levels.

Trace metal data sets containing 10-20 observations were
combined into one group, representing sample sizes generally
comparable to n = 10 simulation results. Data sets having
fewer than three data points after censoring were deleted. A
second group of data sets having from 21 to 40 observations



154

TABLE 9. Trace Constituents Used to Estimate Sample Statistics

Number of Data Sets

Parameter n=10-20 n=21-40
Arsenic 7 100
Dissolved arsenic 3 63
Barium 5 0
Boron 11 3
Dissolved boron 19 7
Copper 1 13
Dissolved copper 1 5
Lead 0 17
Nickel 9 3
Zinc 1 32
Dissolved zinc 0 2
Iron 12 273
Dissolved iron 4 68
Manganese 11 180
Dissolved manganese 0 15

was formed for comparison to n = 25 simulation results. The
eight estimation methods were applied to this data. Again, LR
proved the best overall method. LR was best for the moment
parameters and LM was best for the percentile parameters,
based on the rank criteria given previously.

Rmses are presented by rgr class in Table 10. Comparison
of tables 7 and 10 indicate again that simulation results pro-
duced rmses similar to those for actual trace water quality
data. Only median estimates for 60 and 80% censoring appear
different, with simulation rmses higher than actual. This is
perhaps due to the inclusion of larger sample sizes in the
actual trace-data estimates, with the simulation results repre-
senting conservative error estimates based only on n = 10 or
n =25

SUMMARY AND CONCLUSIONS

The eight methods for estimating population parameters
from censored data sets evaluated by Gilliom and Helsel [this
issue] were applied to uncensored suspended sediment and
nutrient data having large sample sizes (n > 50). Selection of
the estimation method that was best overall, best for moment
and percentile parameters separately, and best within every
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rgr class exactly follows those of the simulation study. The log
regression method (LR) produced lowest rmses for the
moment parameters. Rmses are similarly affected by rqr classi-
fication in both studies for the mean, standard deviation, and
interquartile range, verifying the effectiveness of rgr in separ-
ating distributions which produce like errors. The differences
in rmses for the median are attributed to the presence of high
cv gamma distributions in the simulation study whose equiva-
lent in the verification data, if originally present, may have
contained censored values and would have therefore been ex-
cluded. '

Confidence intervals for parameter estimates can be esti-
mated using rmse and bias results from the simulation study.
Fractional errors (estimate error divided by the true value) are
assumed to be lognormally distributed. Simulation experi-
ments showed that the assumption is a good approximation
for all parameters except the standard deviation for data sets
with low rqr values, for which the widths of confidence inter-
vals were slightly underestimated. The increased accuracy of
rmse estimates after rqr classification allow shorter confidence
intervals to be constructed than would be possible without
classification.

Errors in estimating statistics of uncensored samples rather
than population parameters were also evaluated. Best meth-
ods for estimating sample statistics were LR and LM, respec-
tively, for the moment and percentile parameters. Rmses were
almost always smaller when estimating sample statistics than
for population parameters (LM median estimates occasionally
have greater rmses), and were sometimes much smaller. There-
fore estimates of uncensored sample statistics are identical to
those of population parameters, but have shorter confidence
intervals.

The results of the present study and the companion study
by Gilliom and Helsel [this issue] form the basis for making
the best possible estimates of either population parameters or
sample statistics from censored water-quality data. Moreover,
they provide the means for making quantitative assessments of
the reliability of those estimates, expressed as confidence
bounds. The LR method for moment parameters and LM
method for percentile parameters should be the methods of
choice when estimating distributional parameters for censored
trace level water quality data.

TABLE 10. Rmses of Best Estimation Methods for Trace Data in Percent of Uncensored Sample Estimate

20% Censoring 40% Censoring

60% Censoring 80% Censoring

Method LR LM LR M LR LM LR LM
X s m iqr X s m igr x s m iqr x s m iqr
Rqr < 047 Rgr < 0.35 Rgr < 0.25 Rgr < 0.16
n = 10-20 4 23 9 31 57 15 39 10 73 30 53 32 55
n = 21-40 2 10 5 15 44 12 24 16 43 23 28 73 45
Rgr =047-1.2 Rgr = 0.35-0.84 Rgr = 0.25-0.60 Rgr = 0.16-041
n = 10-20 3 8 7 13 23 11 15 14 29 15 16 40 37
n = 21-40 2 5 5 9 25 10 12 12 45 21 17 63 51
Rgr=12-38 Rgr = 0.84-2.1 Rgr = 0.60-1.4 Rgr =041 - 092
n = 10-20 3 6 6 8 11 12 12 16 16 20 20 34 51
n = 21-40 2 3 5 5 17 10 8 17 30 22 13 47 41
Rgr > 3.8 Rgr > 2.1 Rgr > 14-3.7 Rgr > 092
n = 10-20 1 1 4 3 9 7 6 11 21 28 9 86 99
n = 21-40 1 1 3 2 14 9 5 24 30 22 8 150 72
Rgr > 3.7
n=10-20 6 2 28 39
n=21-40 6 2 52 25
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APPENDIX : CALCULATION OF 1 — o CONFIDENCE INTERVAL
(o = 0.05) FOR ESTIMATE OF THE MEAN FrROM
CENSORED DATA
Data set: ND, ND, ND, ND, ND, 6, 6, 6, 8, 10, 10, 10, 11, 20
Detection limit = 5.0 n=14

10.5-6
rqr = 5= 0.90

Percent censoring = 36%

Estimates using LR method:
mean = 7,4# q
standard deviation = 4.69/ ©
From Tables 3 and 6, for

n =10 percent censoring = 40% LR method,
rmse = 0.30 bias = —0.04
c,> = 0.088 o,” = 0.092 u, = —0.087

747 %xp [ +0.087 — (196)0.303)] < j < 742 §

- exp [0.087 + (1.96)(0.303)]
447 < p < 14.64
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