
A Beginners Guide to R Studio
Laura Boehm Vock --- January 2014 (Stat 272 version)

Getting Started
Loading Workspaces and Datasets in RStudio
Packages
Basic Examples
Using Functions
Writing Code in the Script Window
Writing Readable Code – The Importance of Style
R Punctuation
Getting Help
Common Error Messages
R functions used in Stat 272

Getting Started
RStudio is a user interface for the statistical programming software R. While some operations can be

done by pointing and clicking with the mouse, you will need to learn to write program code. This is like

learning a new language- there is specific syntax, grammar and vocabulary, and it will take time to get

used to. Learning R will ultimately give you complete control, flexibility, and creativity when analyzing

and visualizing data... but fluency in this new language will take time. Be precise, go slow, copy other’s

code and be patient!

Dowload R and R Studio

R is a FREE software package for statistics and statistical graphics. It can be downloaded on UNIX,

Windows, and Mac operating systems.

Go to http://cran.us.r-project.org/ and follow the instructions appropriate to your OS. In theory, you

should just be able to run the .exe (Windows) or .pkg (Mac) file once downloaded and it will magically

install. I recommend using all the default settings when downloading R.

Once you have downloaded R, you can install RStudio from http://www.rstudio.com/

Click "Download now", and then click "Download RStudio Desktop". Select and download the version

appropriate for your operating system.

R Basics

R is an object based language – objects include matrices, vectors, data frames (a special type of matrix),

and functions. All these objects float around in the workspace.

Many functions exist in “base R”- the basic set of functions and other objects available when you open

RStudio for the first time. These include functions for plotting data, basic mathematical operations, and

some statistical procedures which we will learn. Additional functions can be added by loading packages-

these are sets of objects compiled by other R users and made publicly available. You can also write your

own functions.

http://cran.us.r-project.org/
http://www.rstudio.com/

2

When you open RStudio you will see four windows:

Script

The script is a document to store a list of R commands. This window may not appear when you first

open RStudio. To create a new script, Click “File  New  R Script.”

Console

Output appears here. The > sign (also called the “prompt”) means that R is ready to accept commands.

You can type commands directly into the console. However, it is a good habit to instead type into the

script window and run commands from there. Nothing in the console can be saved. You can however

save your commands in a script file, and then repeat your analysis later. This is especially helpful if you

are working on a big project or if you’d like to keep your code to refer back to later.

Workspace

This workspace window lists the objects currently available to you. Functions that are part of “base R” or

packages will not appear here (there are just too many to make that practical!) Special functions that

you write yourself or that are part of a previously saved workspace will appear here.

Plot/Help

The final window has several tabs, including a help tab with a search feature. When you create plots

they will appear in this window, which you can resize to get a better view. The “Files” tab also shows you

the files on your computer as one way to access R Scripts you have previously written. Be careful-

deleting files in this window deletes them from your computer.

The script window:

You can store a document of

commands you used in R to

reference later or repeat analyses

Workspace:

Lists all of the objects

(datasets, special

functions) that are

currently accessible

Console:

Output appears here. The > sign means

R is ready to accept commands. Type

directly into the console, or run lines of

code from the script window.

Plot/Help:

Plots appear in this

window. You can resize

the window if plots

appear too small or do

not fit. Help menu can

also be accessed here.

3

Loading Workspaces and Datasets in RStudio
Workspaces are saved using the .RData file extension. A workspace is a convenient way to store

multiple datasets or a set of functions you have written, particularly when running the code to produce

the datasets may take a long time. To load a workspace, click the folder icon under the

“Workspace” tab in the upper right RStudio window. Navigate to wherever you have saved the

workspace and open it. You should now see a list of objects in the workspace window at right.

To load a dataset into your workspace, you need to click on the Import data button

and select “From file” or “From URL” as appropriate. You can load csv or txt files that you have saved on

your computer via “From file.” When data appear as text files online, you may be able to load them

directly from the URL.

Now you just need to be sure the preview of the Data Frame looks correct.

Once you import the dataset, a new data frame will appear in your workspace with whatever name was

in the “Name” box.

Check that column (variable)

names appear bolded. This

ensures they will be treated

as column names.

If the first row of the file is

the column (variable)

names, It should say

“Heading” YES

RStudio usually does a good job

determining what the

“Separator” should be on its

own. But if the data aren’t lining

up in your preview, you might

try changing this.

For .csv files, the separator

should be comma. For .txt files,

the correct separator is most

likely tab or white space.

Name is what this dataset will be called in your

workspace. The default will be the file name… if

this will be particularly annoying to type over

and over, you can change it here.

4

Packages
While many useful functions are included in “base R,” users and developers can create and submit their

own add-on packages with specialized functions and datasets. Accessing these packages requires two

steps: installing the package onto your computer (only needs to be done once) and loading the library

into your workspace (needs to be done every time you open RStudio). For example, many specialized

plotting functions are included in ggplot2.

Packages can be installed by point and click in RStudio. First click on “Tools” and select “Install Packages”

Begin typing the package name. You can see auto complete options will appear. It is recommended to

leave the “Install dependencies” box checked, as this will automatically install any packages required to

run your desired package. Click “Install.”

Some warning messages may appear if the package was built under a different R version or if other

packages are installed because of dependencies. Errors may occur at this step, so be sure to read the

text which appears in red. When the package is successfully installed, you should see a message in the

console which says:

package ‘ggplot2’ successfully unpacked and MD5 sums checked

To use the package, you must use function library() to load the desired package every time you

reopen RStudio. Libraries will not automatically load whenever you use RStudio.

5

Warning messages may appear. Usually these are safe to ignore, but with less commonly used or very
outdated packages, check CRAN online to see if there are reported problems or if the package is still
supported.

Basic Examples
R runs code line by line. That is, you tell it one thing, and it does it right away. (Sometimes if our one

“line” of code is super long, it will actually be written as multiple lines on a page, but R treats it as one

super-long sentence of code).

With numbers, we can use R like a calculator. The following is an example of what appears in the

console window when we type 3 + 7 and hit enter.

Basic Math operators in R

+ 3+7
- 3-7
* 3*7
/ 3/7
^ 7^3

sqrt sqrt(3) √
 log log(2) NATURAL log:
exp exp(log(2))

We can also store objects using names. We see this most often in this class with named data frames.

(aka data sets). We will also store tables, function output, or single values. A simple example is the

following code:

se <- sqrt(.75*.25/200)

This is an example where I might want to store the standard error for a sample proportion of .75 with

200 observations as “se” in my workspace. This is convenient if I am going to be using it over and over in

equations. You’ll notice that if you run this line of code, no output appears in your console. But a new

“Value” appears in your workspace, called se. You can also use “=” to assign values rather than “<-“.

The textbook tends to use “=” but many prefer to use the arrow as a convention; as you write more

code, you will tend to develop your own style.

Note that R is case sensitive. The object se is not the same as SE.

6

Using Functions
Two functions we will commonly use in Stat 272 are lm and plot.The function lm is used for limple and

multiple linear regression and takes many possible arguments or inputs, though we commonly only use

two: the formula (model statement) and the dataset.

lm(formula, data)

When using R functions, you can specify which argument is which by name, or based on the order of

entering information. For function inputs, you can also truncate the names. That is, all of the following

will give equivalent results:

lm(formula= y~x, data=example1)

lm(form=y~x, dat=example1)

lm(y~x, data=example1)

Notice that the first argument y~x is assumed to be the formula. See the help menu or autocomplete

hints for the expected order of arguments. If you use the argument names, the order does not matter.

(This can be helpful for preventing errors).

Another useful feature of RStudio is auto completion. Try typing just “l” or “lm” in the script window

and hit the Tab key.

A list of possible functions that begin with “l” will appear. Information about the selected function

appears to the right.

You can also use auto completion when you do not remember the names of the function arguments. Hit

tab while your cursor is within the parentheses.

7

Some function arguments are optional... as you can see, there are many options with the lm function,

but we usually only specify the formula (model choice) and sometimes the dataset.

Once you have typed your complete line of code in the script window, run it by placing your cursor

anywhere in the line, and hitting “Ctrl+Enter” or “Ctrl+R”

When you type into the script window, you will notice coloration of your inputs:

This is one big advantage of entering code in the script window rather than directly into the console.

You’ll notice several things:

 Numbers are blue. Text (denoted by quotes) is green

Function, object and argument names are black.

Parentheses are gray. Closed parenthesis is automatically produced with the open parenthesis.

 By placing my cursor by a parenthesis, the matching one is highlighted in grey.

When you run a line of code, you will see the line and any output in the console window:

The blue line shows the command that was run, and the black is output from this function. Should you

receive error messages, they will be red. Plots, if any, will appear in the plot window.

Notice that another blue > “prompt sign” has appeared beneath the output, indicating this command is

completed, and R is ready to take another command. If a + appears, that indicates the line or “sentence”

of code has not yet been completed (most likely a missing parenthesis) and R has not yet run the

command.

8

Starting another line of code right away without finishing this command will probably result in an error.

Code “sentences” can break over multiple lines; just don’t forget to finish them. For example:

The plot function does not produce any output in the console but should produce plots in the plot

window.

Writing Code in the Script Window
It can be really tempting to just type everything directly into the console- and if you are only running

one or two lines of an analysis which you will never repeat, that can be ok. However, when doing

homework and projects it will be essential to have a copy of the code you have run. I will frequently

share R scripts with you which include examples. It is a good idea to keep these, and even add

comments and notes of your own as we use them in class.

Advantages of writing code in the script window:

1. Auto-coloration and parentheses highlighting make errors easier to find.

2. You can save your code and write notes to yourself to reference later.

3. Makes it easy to share your code with classmates when working on projects, or to share with me

if you have questions.

4. Makes your analysis repeatable, easy to edit and copy.

Scripts have the file extension “.R” If you don’t have R installed on your computer, you can look at .R

files using a text editor such as Notepad (although then you’ll just see plain text, not colors). Plain text

files (.txt) can also be opened in RStudio as script files.

One of the great things about script files is the ability to include comments. These are notes inserted

along with the R commands that will not be run in R. Here is an example of a short script- the parts

marked with # are comments.

Example R Script
Created by Laura Boehm Vock on Jan 24, 2014
Last Edited by Laura Boehm Vock on Jan 28, 2014

Create variables x and y
x <- rnorm(20)
y <- rnorm(20)

Fit the linear model
model1 <- lm(y ~ x)

Plot y versus x and include line of best fit
plot(x, y, main = “Example plot”)
abline(model1) #this is a comment too.

This first part is called the “header”—it’s a good

idea to put something descriptive here. It can also

be helpful if you’re passing code back and forth

when working on a project

I like to use full lines of ### to visually separate a long

code document into chunks- especially on big projects or

to separate homework problems.

9

Comments can take up a whole line, or the end of a line. Anything after # but before a new line is

commented and will not be run when you hit “Ctrl+Enter” or “Ctrl+R.”

What if you type something into the console, and then decide you want to keep it as part of your script?

Rather than retype the whole thing, either copy and paste directly from the console OR use the

“History” tab which is in the same pane as the “Workspace” tab. Click where you want the line inserted

in your script; then highlight the desired line in the “History” tab and click . The line will be

copied and pasted where your cursor last clicked in your script. This is especially useful if you load a

workspace, package or data by point-and-click. RStudio generates a line of code that you can use to

repeat this action in the future.

Writing Readable Code – The Importance of Style
As you become more comfortable writing code in R, you might want to consider your code writing style.

As you gain more experience, you’ll notice that every person’s code looks just a little bit different-

particularly choices for spacing, naming of objects and functions, and where comments are placed. If

you are experienced in using other programming languages, you may have learned about programming

style guides- a set of conventions programmers use in developing code that makes their code easier to

read.

There is no single “correct” style for R programming, but it helps to develop some consistency about

your coding choices. Here are some resources to get you thinking about this:

Google’s R style guide: http://google-styleguide.googlecode.com/svn/trunk/Rguide.xml (the original R

style guide- many, including Wickham’s below, are based mainly on this guide).

Hadley Wickham’s style guide: http://adv-r.had.co.nz/Style.html (Dr. Wickham created the package

ggplot2 and now works for RStudio, so he knows something about elegant codewriting.)

Reverse engineering the R development team’s style: http://cran.r-

project.org/web/packages/rockchalk/vignettes/Rstyle.pdf

http://google-styleguide.googlecode.com/svn/trunk/Rguide.xml
http://adv-r.had.co.nz/Style.html
http://cran.r-project.org/web/packages/rockchalk/vignettes/Rstyle.pdf
http://cran.r-project.org/web/packages/rockchalk/vignettes/Rstyle.pdf

10

R Punctuation
Used to create comments in an R Script. Running these lines will create no output.

"" or ''
Double or single quotes indicate chunks of text that should be treated as text rather than
names of functions or other objects.

()

Parentheses can be used to indicate order of operations in complicated computations:
(3+2)^2

They are used to indicate functions:

function(arg1, arg2, arg3)

[]

Square brackets are used to subset matrices and vectors.

This indicates the first column of the matrix “data”

data[, 1]

This indicates the second row of the matrix “data”
data[2,]

This indicates the single item in the first column and second row

data[2, 1]

This indicates the third item in the vector called “variable”. Notice we don’t need a
comma since vectors only have one set of indices.

variable[3]

:

Used to create a list of integers. Can be used when creating “for loops” or for subsetting
data

This gives the first ten rows of data:
data[1:10,]

$

Used to subset a dataframe or list object.

Get the variable called “var1” from the dataframe called “data”

data$var1

When output from linear model regression function is saved as “model” can access
coefficients, etc.

model <- lm(y~x, data=data)
model$coeff

{}

Used for creating chunks of code, particularly for loops.
 for(i in 1:100){
 iscambinomtest(i, 100, .5, “greater”)
 }

~
Used for creating formula/model statements, e.g. for t.test or lm function.

t.test(response~explanatory, data=data)

11

Getting Help
For any R functions (that are part of base R or added through packages) you can access the help menu

by typing ? before the function, or by searching directly in the “Help” tab in the lower right.

1. Check out the “R Code Library” on Moodle- this is a student generated forum for you to share

code with each other.

2. Google it! Seriously. Just Google “R t-test” or “R plotting” and you will be amazed.

3. Ask your professor. This shouldn’t be your last resort, but I’m not always available immediately.

12

Common Error Messages
If you get red output, you have experienced an error. Here are a few of the most common error

messages you will encounter.

Error: Object ‘...’ not found

This means the object referred to is not in your workspace. This could be because:

1. You forgot to load data or install a package.

2. You made a type-o or capitalization error.

3. You may have forgotten quotation marks, e.g. “greater” as the function input for hypothesis

tests. Also check that logicals such as TRUE/FALSE are in all caps.

4. You forgot to run a line of code earlier which created the object you are referring to. (Scroll

up through your console to make sure).

5. You may be attempting to refer to a variable within a specific dataset. For example, you

want to look at the variable “time” within the dataset “OldFaithful”. Instead of referring

just to time, try OldFaithful$time or specify data=OldFaithful within your function

(The first way should always work... the second way only works for certain functions)

Error in plot.new() : figure margins too large

You have created a plot but it doesn’t fit in your plot window. Try increasing the size of the plot window

and rerunning your plot command.

Error: unexpected numeric constant in: ...

You are most likely missing a parenthesis, a comma, or ran a line of code with a + prompt when you

thought the previous line had completed. Carefully read your code line and check for all the proper

syntax.

Error in: undefined columns selected

This means the columns of the data set you’ve selected don’t exist. If selecting columns numerically, be

sure you have the indices correct. If selecting by name, check spelling and capitalization. Finally, check to

be sure you loaded the data correctly and that variables names are appearing as column headings and

not as the first row of data.

You keep getting + when you expect >

You’ve probably missed a parenthesis or accidently ran only half a line of code. Just hit Esc to get out of

this mess and then carefully reread your code in the script window, checking for parentheses.

You keep getting NA as your answer

This means you have missing values in your dataset. You can either “clean” your data to get rid of

missing values, or check the help menus for the function you are using to see if there are options for

dealing with missing values.

Warning messages mean the code ran, but there may be a problem. Don’t ignore these! Read them!

They may indicate a problem with your code or that statistical assumptions are not met.

13

R functions used in Stat 272
This is not an exhaustive list, but hits the ones we will use repeatedly. You might consider keeping your

own “Code document” with examples of how to use these functions as we come across them rather

than having to search through the book or Moodle every time. The R reference card on Moodle is also a

good resource.

abline

barplot

boxplot

cbind

chisq.test

cor

exp

for

glm

hist

histogram {lattice}

legend

lm

log

matrix

mean

par

plot

prop.table

qqnorm

rbind

rbinom

round

sample

sd

step

summary

t.test

table

https://moodle-2013-14.stolaf.edu/mod/resource/view.php?id=46631

