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Less than obvious

Statistical treatment of data below the detection limit
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As researchers increasingly investigate
trace substances in the world’s soil, air,
and water, they frequently find concen-
trations that are lower than limits
deemed reliable enough to report as nu-
merical values. These so-called ‘‘less-
than’” values—values stated only as
“<rl,”” where rl is the “‘reporting limit”
or ‘‘limit of quantitation’” (1) or ‘“deter-
mination limit”’ (2)—present a serious
interpretation problem for data analysts.
For example, compliance with wastewa-
ter discharge regulations usually is
Jjudged by comparing the mean of con-
centrations observed over some time in-
terval with a legal standard. Yet mean
values from samples cannot be comput-
ed when less-thans are present.

Studies of groundwater quality at
waste-disposal sites commonly involve
comparisons of two groups of data (up-
gradient versus down-gradient wells).
Usually, ¢ tests (the most common test
for determining whether two means dif-
fer) are employed for this purpose, but
the ¢ test requires estimates of means
and standard deviations that are impos-
sible to obtain unless numerical values
are fabricated to replace any less-thans
present in the data. The results of such
tests can vary greatly depending on the
values fabricated. Therefore, estimates
of summary statistics (such as mean,
standard deviation, median, and inter-
quartile range) that best represent the
entire distribution of data, below and
above the reporting limit, are necessary
to analyze environmental conditions ac-
curately. Also needed are hypothesis test
procedures that provide valid conclu-
sions as to whether differences exist
among one or more groups of data.
These needs must be met using the only
information available to the data analyst:
concentrations measured above one or
more reporting limits, and the observed
frequency of data below those limits.

This paper discusses the most appro-
priate statistical procedures for handling
data that have been reported as less-
thans. It does not consider the alterna-
tive of reporting numerical values for all
data, including those below reporting
limits (3-6).

Estimating summary statistics

Methods for estimating summary sta-
tistics of data that include less-thans
(statisticians call these ‘‘censored
data’’) can be divided into three classes:
simple substitution, distributional, and
robust methods. Recent papers have
documented the relative performance of
these methods (7-11). The first three pa-

pers compare the abilities of several es-
timation methods in detail over thou-
sands of simulated data sets (7-9). They
are applied to numerous water-quality
data sets, including those that are not
similar to the assumed distributions re-
quired by the distributional methods
(10). A single case study is reported
(11). Only one report deals with censor-
ing at multiple reporting limits (9).
Large differences in these methods’
abilities to estimate summary statistics
have been found.

Which summary statistics are ap-
propriate? Environmental quality data
usually are positively skewed, and
sometimes very highly skewed (7, 12—
14). This is especially true for data close
to zero that include censored values, be-
cause the lower bound of zero ensures a
positive skew. In a typical pattern, most
data have low values, but a few high
““outliers’” occur. In such cases, the
mean and standard deviation are affect-
ed strongly by those few observations
that show the highest values. The mean
and standard deviation may be quite
sensitive to the deletion or addition of
even one observation, and therefore are
poor measures of central value and vari-
ability. For positively skewed data, the
mean may be exceeded by less than half
of the observations, sometimes even by
25% or less. The mean, therefore, is not
a good estimate of the central value of
those data. Similarly, the standard devi-
ation will be inflated by outliers, imply-
ing a variability larger than that shown
by the majority of the data set. The
mean and standard deviation are useful
for mass loadings of a constituent, such
as computations of the average sediment
concentration at a river cross section.
Large concentrations at one point in the
cross section should increase the overall
mean value. However, when the strong
influence of one large value distorts
summaries of data characteristics, such
as the ‘“‘typical” sediment characteris-
tics found over many streams, the mean
and standard deviation usually are not
appropriate measures.

Alternative measures of central value
and variability for skewed data are percen-
tile parameters such as the median and in-
terquartile range (IQR). By definition, the
median has 50% of the values of the data
above it and 50% below. Unlike the mean,
the median is not strongly affected by a few
low or high “‘outlier observations.”” It is a
more stable (or ‘“‘resistant’’) estimator of
typical value for skewed data and is similar
to the mean for symmetric (nonskewed)
data. Often, the ‘‘geometric mean,” the
mean of logarithms of the data, is comput-
ed for the same purpose. The geometric
mean 1S an estimate of the median (in orig-
inal units) when the logarithms are sym-
metric.

Like the median, the IQR is largely
unaffected by the lowest or highest data
values. It is the 75th percentile minus
the 25th percentile, and thus is the range
of the central 50% of the data. The IQR
equals 1.35 times the standard deviation
for a normal distribution. However, for
the skewed distributions common to en-
vironmental monitoring data, the IQR
often will be much smaller than the
standard deviation, and a better estimate
of variability of the bulk of the data.

The median and the IQR have another
advantage when applied to censored
data: When the values of less than 50%
of the data are below the reporting limit,
the sample median is known. Similarly,
when less than 25% of the data are cen-
sored, the sample IQR is known. No
“fix-ups’’ are necessary to obtain sam-
ple estimates.

Comparing estimation methods. Es-
timation methods may be compared on
the basis of their ability to replicate true
population statistics. Departures from
true values are measured by root mean
squared error (RMSE), which combines
bias and lack of precision. Methods with
lower RMSE are considered better.

Class 1: Simple substitution methods.
These methods substitute a single value
such as one-half the reporting limit for
each less-than value. Summary statistics
are calculated using these fabricated
numbers together with the values above
the reporting limit. These methods are
widely used, but have no theoretical ba-
sis. As Figure 1 shows, the distributions
resulting from simple substitution meth-
ods have large gaps and do not appear
realistic.

All of the studies cited above deter-
mined that simple substitution methods
perform poorly in comparison with oth-
er procedures (7—/1). The substitution
of zero produces estimates of mean and
median that are biased low, whereas
substituting the reporting limit results in
estimates above the true value. Results
for the standard deviation and IQR, and
for substituting one-half the reporting
limit, also are far less desirable than
those for alternative methods. With the
advent of convenient software (/1) for
other procedures, there appears to be no
reason to use simple substitutions for
such computations. Because large differ-
ences may occur in the resulting esti-
mates, and as the choice of value for
substitution essentially is arbitrary with-
out some knowledge of instrument read-
ings below the reporting limit, estimates
resulting from simple substitution are
not defensible.

Class 2: Distributional methods. Dis-
tributional methods (Figure 2) use the
characteristics of an assumed distribu-
tion to estimate summary statistics. Val-
ues of data below and above the report-
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FIGURE 1
Histograms for simple substitution methods for handling
less-than values
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ing limit are assumed to follow a
distribution such as the lognormal. Giv-
en a distribution, estimates of summary
statistics are computed that best match
the observed concentrations above the
reporting limit and the percentage of
data below the limit. Estimation meth-
ods include maximum likelihood esti-
mation (MLE) (15) and probability plot-
ting procedures (16). Although MLE
estimates are more precise than proba-
bility plotting, both methods are unbi-
ased when observations fit the assumed
distribution exactly and the sample size
is large. This is rarely the case, howev-
er. When data do not match the ob-
served distribution, both methods may
produce biased and imprecise estimates
(7, 9). The most crucial consideration
when using distributional methods, then,
is how well the data can be expected to
fit the assumed distribution. Even when
distributional assumptions are correct,
MLEs have been shown to produce esti-
mates with large bias and poor precision
for the small sample sizes (n = 5, 10,
and 15) considered common for envi-
ronmental data (8). MLE methods com-
monly are used in environmental disci-
plines such as air quality studies (/7)
and geochemistry (12).

Assuming a lognormal distribution for
concentrations, MLEs for larger data
sets (n = 25, 50) have provided excellent
estimates of percentiles (median and
IQR) for a variety of data distributions
realistic for environmental studies, in-
cluding those that are not lognormal.
However, they have not worked as well
for estimating the mean and standard de-
viation (7, 10). There are two reasons
this is so.

First, the lognormal distribution is
flexible in shape and provides reason-
able approximations to data which are
nearly symmetric, as well as to some
positively skewed distributions which
are not lognormal. Thus the lognormal
can mimic the actual shape of the data
over much of the distribution, adequate-
ly reproducing percentile statistics even
though the data were not truly lognor-
mal in shape. However, the moment sta-
tistics- (mean and standard deviation) are
very sensitive to values of the largest
observations. Failure of the assumed
distribution to fit these observations will
result in poor estimates of moments.

Second, there is a transformation bias
(Table 1) inherent in computing esti-
mates of the mean and standard devia-
tion for any transformation—including
logarithms—and then transforming back
to original units (18-19). Percentiles,
however, can be transformed directly
between measurement scales without
bias. Estimates of mean and standard
deviation computed in transformed units
by MLEs or other methods are biased
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when they are retransformed. Several
studies have included methods that at-
tempt to correct for this bias (9, 11, 12).

Two distributional methods that are
used less frequently are a “‘fill-in with
expected values’’ MLE technique (8)
and a probability plot method which es-
timates the mean and standard deviation
by the intercept and slope, respectively,
of a line fit to data above the reporting
limit (16). Probability plot methods are
easy to compute with standard statistics
software, an advantage for practitioners.
Both methods suffer from transforma-
tion bias, however, when estimates are
computed in one scale and then retrans-
formed back into original units. There-
fore, the probability plot has been rec-
ommended for estimating the geometric
mean (16), but it would not work well
for estimating the mean in original units
because of transformation bias. Both
methods should be slightly less precise
than MLEs.

Class 3: Robust methods. These meth-
ods (Figure 3) combine observed data
above the reporting limit with below-
limit values extrapolated, assuming a
distributional shape, in order to compute
estimates of summary statistics (Figure
4). A distribution is fit to the data above
the reporting limit by either MLE or
probability plot procedures (7, 9), but
the fitted distribution is used only to ex-
trapolate a collection of values below
the reporting limit. These extrapolated
values are not considered estimates for
specific samples, but are used collec-
tively only to estimate summary statis-
tics. The robustness of these methods re-
sults primarily from their use of
observed data rather than a fitted distri-
bution above the reporting limit. They
also avoid transformation bias by per-
forming all computations of summary
statistics in original units.

Robust methods have produced con-
sistently small errors for all four sum-
mary statistics in simulation studies (7,
9), as well as when applied to actual
data (10). Robust methods have at least
two advantages over distributional
methods for computation of means and

FIGURE 3
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standard deviations. First, they are not
as sensitive to the fit of a distribution for
the largest observations because actual
observed data are used rather than a fit-
ted distribution above the reporting lim-
it. Second, estimates of extrapolated val-
ues can be directly retransformed and
summary statistics computed in the orig-
inal units, thereby avoiding transforma-
tion bias.

Recommendations. Robust proce-
dures have substantial advantages over
distributional methods when concentra-
tions cannot be assumed to follow a de-
fined distribution. In practice, the distri-
bution of environmental data is rarely if
ever known, and it may vary between
constituents, time periods, and locations.
It is not surprising, therefore, that robust
methods have been recommended for
estimating the mean and standard devia-
tion (7, 9). Either robust probability plot
or distributional MLE procedures per-

form well for estimating the median and
IQR (7-9). The use of these methods,
rather than simple substitution methods
for environmental data, should reduce
estimation errors for summary statistics
substantially.

Multiple reporting limits. Data sets
may contain values censored at more
than one reporting limit. This occurs fre-
quently as limits are lowered over time
at a single laboratory, or when data hav-
ing different reporting limits are com-
bined from multiple laboratories. Esti-
mation methods that belong to the three
classes described above are available to
remedy this situation. A comparison of
these methods (9) again leads to the
conclusion that robust methods provide
the best estimates of mean and standard
deviation, and MLEs for percentiles. For
example, in Figure 5, the error rates for
six estimation methods are compared
with the error that would occur had all
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data been above the reporting limit
(shown as the 100% line). Figure 6
shows the same information when the
data differ markedly from a lognormal

- FIGURE 5
‘Root mean square error rates of six multiple-detection methods
for data similarto a lognormal distribution®
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ity plot method for estimating the mean
and standard deviation should decrease
errors far more efficiently than would
simple substitution methods for data
with multiple reporting limits.

Software for computations. MLE
methods require advanced computation-
al software. These and other distribu-
tional methods for single reporting lim-
its, including the distributional (slope-
intercept) probability plot estimator,
recently were made available to the sci-
entific community (/7). By contrast, the
robust probability plotting method for a
single reporting limit can be computed
casily by most commercially available
statistics software. Normal scores
(““NSCORES”’ of Minitab, or ‘“PROC
RANK”* within SAS, for example) first
are computed with all less-thans set to
slightly different values all below the re-
porting limit. Second, a linear regression
equation is developed using only the
above-limit observations, where log of
concentration is the y variable and nor-
mal scores the x variable. Estimates for
the below-limit data then are extrapolat-
ed using this regression equation from
normal scores for the below-limit data.
Finally, extrapolated estimates are re-
transformed into units of concentration,
combined with above-limit concentra-
tion data, and summary statistics com-
puted. Fortran code for multiple report-
ing limit techniques may be obtained by
sending a self-addressed, stamped enve-
lope and a formatted 3 1/2 inch disk
(MS-DOS or Macintosh format) to the
author.

Methods for hypothesis testing

Methods for hypothesis testing of
censored data can be classified into the
three types: simple substitution (class 1),
distributional or parametric (class 2),
and robust or nonparametric (class 3).
Parametric statistical tests frequently are
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used in environmental assessments.
They assume that data follow some dis-
tributional shape, usually the normal
distribution. Parameters (true population
statistics), such as the mean and stan-
dard deviation, are estimated to perform
the test. When censoring is present, val-
ues often are fabricated to estimate these
parameters (class 1). Problems caused
by fabrication are illustrated below.
Parametric tests that do not require sub-
stitutions for less-thans (class 2) also are
available. Where the distributional as-
sumptions are appropriate, these rela-
tively unknown tests are very useful.
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Investigators have, on occasion, delet-
ed censored data before hypothesis test-
ing. This approach is the worst proce-
dure because it causes a large and
variable bias in the parameter estimates
for each group. After deletion, compari-
sons made are between the upper X % of
one group versus the upper Y % of an-
other, where X and ¥ may be very dif-
ferent. Such tests have little or no mean-
ing.

Alternatively, nonparametric tests can
be performed (20). These tests simply
rank the data and indicate whether the
ordering of the data points shows that



differences occur or that trends exist. No
fabrication of data values is required be-
cause all censored data are represented
by ranks that are tied at values lower
than the lowest number above the re-
porting limit. These tests generally have
greater power than parametric tests
when the data do not conform to a nor-
mal distribution (20, 21).

As an example of the differences be-
tween hypothesis test methods for cen-
sored data, tests were performed that de-
termine whether means or medians
significantly differ between two groups.
Two data sets were generated from log-
normal distributions having the same
variance but differing mean values.
Sample statistics for the two data sets
before and after censoring are given in
the box.

Before any censoring, group means
are shown to be significantly different
by a t test (p = 0.04, Table 2) and by a ¢
test for regression slope equal to zero.
The latter is performed by designating
the data set each observation belongs to
as either a zero or one. This binary vari-
able then is used as the explanatory (in-
dependent) variable in a linear regres-
sion. Though identical to the ¢ test
before censoring, a variation of the re-
gression approach will become the dis-
tributional (class 2) method for censored
data used later. The equivalent nonpara-
metric test, the rank-sum test, produces
a much lower p-value (p = 0.003). This
lower p-value is consistent with the
proven greater power of the nonpara-
metric test to detect differences between
groups of skewed data (21, 22), com-
pared with the ¢ test.

Suppose that these data represent dis-
solved arsenic concentrations. A typical
reporting limit for dissolved arsenic is
1 ug/L; therefore all data below 1.0
would be recorded as <1. Censoring
these data sets at 1 produces 14 less-
than values (70%) in group A and five
less-than values (23%) in group B (box).

The class 1 method for comparing
two groups of censored data is to fabri-
cate data for all less-than values, and in-
clude these ‘‘data’ with detected obser-
vations when performing a ¢ test. No a
priori arguments for fabrication of any
particular value between zero and the re-
porting limit can be made. When zero is
substituted for all less-than values, the
means are declared significantly differ-
ent (p = 0.01). Yet when the reporting
limit of 1.0 is substituted, the means are
not found to be different (p = 0.19). The
conclusion therefore is strongly depen-
dent on the value substituted! This ex-
ample shows that the fabrication of data
followed by a t test must be considered
too arbitrary for use, especially for legal
or management decision purposes, and
should be avoided.

Characteristics of two lognormal data groups
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The distributional (class 2) method
for hypothesis testing also requires an
assumption of normality, but does not
involve the substitution of values for
censored data. Instead, a f test is per-
formed using a regression procedure for
censored data known as fobit regression
(23, 24). Tobit regression uses the data
values above the reporting limit and the
proportion of data below the reporting
limit to compute a slope coefficient by
maximum likelihood. For a two-group
test, the explanatory variable in the re-
gression equation is the binary variable
of group number, so that data in one
group have a value of zero, and in the
other group a value of one. The regres-
sion slope then equals the difference be-
tween the two group means, and the ¢
test for whether this slope differs from
zero also is a test of whether the group
means differ. (Tobit regression is also
discussed later in the section on regres-

sion.) One advantage of tobit regression
for hypothesis testing is that multiple re-
porting limits may be easily incorporat-
ed. Users should be cautioned, however,
that proper application requires that the
data in both groups be normally distrib-
uted around their group mean and that
the variance in each group be equal. For
large amounts of censoring, these re-
strictions are difficult to verify.

The nonparametric (class 3) equiva-
lent is the rank-sum test. It considers the
19 less-than values tied at the lowest
value, with each assigned a rank of 10
(the mean of ranks 1-19). The resulting
p-value is 0.002, essentially the same as
for the original data, and the two groups
are easily declared different. In this ex-
ample, the nonparametric method makes
very efficient use of the information
contained in the less-than values, avoids
arbitrary assignment of fabricated val-
ues, and accurately represents the lack
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of knowledge below the reporting limit.
Results do not depend on a distribution-
al assumption (25).

When severe censoring (near 50% or
more) occurs, all of the above tests have
little power to detect differences in cen-
tral values. The investigator will find it
difficult to state conclusions about the
relative magnitudes of central values,
and other characteristics must be com-
pared. For instance, contingency tables
(class 3) can test for a difference in the
proportion of data above the reporting
limit in each group (20). This test can be
used when the data are reported only as
detected or not detected. It also may be
used when response data can be catego-
rized into three or more groups, such as
below detection, detected but below
some health standard, and exceeding
standards. The test determines whether
the proportion of data falling into each
response category differs as a function
of different explanatory groups, such as
different sites or land use categories.

Hypothesis testing with multiple re-
porting limits. More than one reporting
limit often is present in environmental
data. When this occurs, hypothesis tests
such as comparisons between data
groups are greatly complicated. The fab-
rication of data followed by computa-
tion of  tests or similar parametric pro-
cedures is at least as arbitrary with
multiple reporting Hmits as with one re-
porting limit, and should be avoided.
Also, data below all reporting limits
should never be deleted before testing.

Tobit regression (class 2) can be used
with multiple reporting limits. Data
should have a normal distribution
around all group means and equal group
variances to use the test. These assump-
tions are difficult to verify with cen-
sored data, especially for small data sets.

One robust method that always can be
used is to censor all data at the highest
reporting limit, and then perform the ap-
propriate nonparametric test. Thus the
data set
<l <1 <1578<10<10<1012 16 25
would become

<10 <10 <10 <10 <10 <10 <10 <10
<1012 16 25
and a rank-sum test would be performed
to compare this with another data set.
Clearly, this causes a loss of information
which may be severe enough to obscure
actual differences between groups (a
loss of power). For some situations,
however, this is the best that can be
done.

Alternatively, nonparametric score
tests common in the medical “‘survival
analysis’” literature sometimes can be
applied to the case of multiple reporting
limits (26). These tests modify uncen-
sored rank test statistics to compare
groups of data. The modifications allow

for the presence of multiple reporting
limits. In the most comprehensive re-
view of these score tests (27), most of
them were found inappropriate for the
case of unequal sample sizes. Another
crucial assumption of score tests is that
the censoring mechanism must be inde-
pendent of the effect under investigation
(see box). Unfortunately, this often is
not the case with environmental data.
The Peto-Prentice test with an asymp-
totic variance estimate was found to be
the least sensitive to unequal sample siz-
es and to differing censoring mecha-
nisms (27).

In summary, robust hypothesis tests
have several advantages over their dis-
tributional counterparts when they are
applie to censored data. These advan-
tages include freedom from adherence to
a normal distribution; greater power for
the skewed distributions common to en-
vironmental data; comparisons between
central values such as the median, rather
than the mean; and the incorporation of
data below the reporting limit without
fabrication of values or bias. Informa-
tion contained in less-than values is used
accurately and does not misrepresent the
state of that information.

When adherence to a normal distribu-

tion can be documented, tobit regression
(class 2) offers the ability to incorporate
multiple reporting limits regardless of a
change in censoring mechanism. Score
tests (class 3) require consistency in the
censoring mechanism with respect to the
effect being tested.

Methods for regression

With censored data, the use of ordi-
nary least squares (OLS) for regression
is prohibited. Coefficients for slopes and
intercept cannot be computed without
values for the censored observations,
and substituting fabricated values may
produce coefficients strongly dependent
on the values substituted. Four alterna-
tive methods capable of incorporating
censored observations are described be-
low. The first and last approaches, Ken-
dall’s robust fit (28) and contingency ta-
bles (20), are nonparametric (class 3)
methods requiring no distributional as-
sumptions. Robust correlation coeffi-
cients also are mentioned (20). Tobit
and logistic regression (24, 29), the sec-
ond and third methods, fit lines to data
using maximum likelihood (class 2).
Both methods assume normality of the
residuals, though with logistic regres-
sion, the assumption is after a logit
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transformation (24). As before, assump-
tions are sometimes hard to check with
censored data.

The choice of method depends on the
amount of censoring present as well as
on the purpose of the analysis. For small
amounts of censoring (below 20%), ei-
ther Kendall’s line or the tobit line may
be used. Kendall’s line would be pre-
ferred if the residuals are not normally
distributed, or when outliers are present.
For moderate censoring (20-50%), tobit
or logistic regression must be used.
With large amounts of censoring, infer-
ences about concentrations themselves
must be abandoned, and logistic regres-
sion must be employed. When the ex-
planatory and response variables are
censored, tobit regression is applicable
for small amounts of censoring. For
larger amounts of censoring, contingen-
cy tables or rank correlation coefficients
are the only option.

Kendall’s robust line fit. When one
censoring level is present, Kendall’s
rank-based procedure for fitting a
straight line to data can test the signifi-
cance of the relationship between a re-
sponse and an explanatory variable (28).
Also of interest is an equation for the
line, including an estimate of the slope.
This can be computed when the amount
of censoring is small.

Kendall’s estimate of slope is the medi-
an of all possible pairwise slopes of the
data. To compute the slope with censoring,
compute the median of all possible slopes
twice, once with zero substituted for all

less-thans and once with the reporting limit
substituted. For small amounts of censor-
ing, the resulting slope will change very lit-
tle or not at all, and can be reported as a
range if necessary. If the slope value
change is of an unacceptable magnitude,
tobit or logistic regression must be per-
formed. Research currently is underway on
methods based on scores that may allow
robust regression fits to data with multiple
reporting limits (30).

Tobit regression. Censored response
data can be incorporated together with
uncensored observations into a proce-
dure called tobit regression (23, 24). It is
similar to OLS except that the coeffi-
cients are fit by maximum likelihood es-
timation. MLE estimates of slope and
intercept are based on the assumption
that the residuals are normally distribut-
ed around the tobit line, with constant
variance across the range of predicted
values. Again, it is difficult to check
these assumptions with censored data.
Outliers can have a strong influence on
the location of the line and on signifi-
cance tests (Figure 7), as is true with
uncensored OLS. Residuals for uncen-
sored data should be plotted versus pre-
dicted values, so that linearity and con-
stant variance assumptions can be
verified for at least small amounts of
censoring. For larger percentages of
less-thans, decisions whether to trans-
form the response variable often must be
made on the basis of previous knowl-
edge (e.g., ‘‘metals always need to be
log-transformed’”).

Tobit regression also is applicable
when the response and explanatory vari-
ables are censored; for instance, in a re-
gression relationship between two
chemical constituents. The amount of
censoring, however, must be sufficiently
small that the linearity, constant vari-
ance, and normality assumptions of the
procedure can be checked. Cohn (/8)
and others have proven that the tobit es-
timates are slightly biased and have de-
rived bias corrections for the method.

Logistic regression. Here, the re-
sponse variable is categorical (29). This
method does not predict concentration,
but rather a probability of being in dis-
crete binary categories such as above or
below the reporting limit. A response
above the limit usually is assigned a val-
ve of 1, and below the limit a 0. The
probability of being in one category ver-
sus the other is tested to see if it differs
as a function of continuous explanatory
variable(s). Examples include predicting
the probability of detecting concentra-
tions of some organic contaminant from
continuous variables such as nitrate con-
cenfrations, population density, percent
of some appropriate land use variable,
or irrigation intensity. Predictions from
this regression-type relationship will fall
between 0 and 1, and are interpreted as
the probability (p) of observing a re-
sponse of 1. Therefore [1 - p] is the
probability of a zero response.

Logistic regression may be used to
predict the probabilities of more than
two response categories. When there are
m > 2 ordinal (i.e., may be placed in an
order) responses possible, (m - 1) equa-
tions must be derived from the data. For
example, if three responses are possible
(concentrations below rl = 0, above r/
but below health standards = 1, and
above health standards = 2), two logistic
regressions must be computed. First, an
equation must be written for the proba-
bility of being nonzero (the probability
of being above the r/). Next, the proba-
bility of a 2 (probability of being above
the health standard) also is modeled. To-
gether, these two equations completely
define the three probabilities p (y = 0), p
(y=1), and p (y = 2) as a function of the
explanatory variables.

Contingency tables. Contingency ta-
bles are useful in the regression context
if both explanatory and response vari-
ables contain censoring (20). For exam-
ple, suppose the relationship between
two trace metals in soils (such as arsenic
and aluminum) is to be described. The
worst procedure again would be to de-
lete the data below the reporting limits
and perform a regression. Figure 8
shows that a true linear relationship with
negative slope could be completely ob-
scured if censored data are ignored and
only data in the upper right quadrant in-
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FIGURE 8
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vestigated. Contingency tables provide a
measure of the strength of the relation-
ship between censored variables—the
phi statistic ¢ (20), a type of correlation
coefficient. An equation that describes
this relationship, in the context of re-
gression, is not available. Instead, the
probability of y being in one category
can be stated as a function of the cate-
gory of x. For the data in Figure 8, the
probability of arsenic being above the
reporting limit is 21/36 = 0.58 when alu-
minum is above reporting limit, and 17/
18 = 0.94 when aluminum is below the
reporting limit,

Rank correlation coefficients. The
robust correlation coefficients Kendall’s
T or Spearman’s p (20) also could be
computed when both variables are cen-
sored. All values below the reporting
limit for a single variable are assigned
tied ranks. Rank correlations do not pro-
vide estimates of the probability of ex-
ceeding the reporting limit as does a
contingency table. Therefore, they are
not applicable in a regression context,
but would be more applicable than con-
tingency tables in a correlation context.
One such context would be in “‘chemo-
metrics” (3/), the computation of corre-
lation coefficients for censored data as
inputs o a principal components or fac-
tor analysis.

In summary, relationships between vari-
ables with data below reporting limits can
be investigated in a manner similar to re-
gression. Values should not be fabricated
for less-thans before regression. Instead, for
small amounts of censoring and one report-
ing limit, Kendall’s robust line can be it to
the data. For moderate censoring or multi-

ple reporting limits, tobit regression can be
performed. For more severe censoring of
the dependent variable, logistic regression
is appropriate. When response and explan-
atory variables contain severe censoring,
contingency tables can be performed.

Less-thans are valuable data

Methods are available that appropri-
ately incorporate data below the report-
ing limit for purposes of estimation, hy-
pothesis testing, and regression. The
deletion of censored data or fabrication
of values for less-thans leads to undesir-
able and unnecessary errors.
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ERRATA: The method legends in figures 5 and 6 are incorrect. They should be:
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FIGURE 5 - Error rates (RMSE - root mean square error) of six multiple-detection

methods divided by error rates for uncensored data estimates, in percent,

for data similar to a lognormal distribution 9)
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FIGURE 6 -- Error rates (RMSE - root mean square error) of six multiple-detection

methods divided by error rates for uncensored data estimates, in percent,

for data not similar to a lognormal distribution. (9)



