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Abstract

Trace contaminants in water, including metals and organics, often are measured at sufficiently low concentrations to

be reported only as values below the instrument detection limit. Interpretation of these ‘‘less thans’’ is complicated when

multiple detection limits occur. Statistical methods for multiply censored, or multiple-detection limit, datasets have been

developed for medical and industrial statistics, and can be employed to estimate summary statistics or model the

distributions of trace-level environmental data.

We describe S-language-based software tools that perform robust linear regression on order statistics (ROS). The

ROS method has been evaluated as one of the most reliable procedures for developing summary statistics of multiply

censored data. It is applicable to any dataset that has 0 to 80% of its values censored. These tools are a part of a

software library, or add-on package, for the R environment for statistical computing. This library can be used to

generate ROS models and associated summary statistics, plot modeled distributions, and predict exceedance

probabilities of water-quality standards.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Water-quality data sets commonly contain analytical

values that at the time of determination, were lower than

limits deemed reliable enough to report as numerical values.

These observations are reported as seminumerical values

that contain qualifiers indicating that the analyte is below

the limits of reliability for accurate quantification. Typically
e front matter r 2005 Elsevier Ltd. All rights reserve
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these values are expressed as ‘‘nondetects’’ or ‘‘less thans’’

such as o0:5. Data sets containing values produced in this

manner are referred to as censored data sets, where the

qualified value is known as the censoring limit.

Furthermore, it is common to have water-quality data

sets that contain more than one censoring limit. This

occurs when the data set may have been generated over

a time when the analyzing laboratory has changed levels

of detection as instruments have gained accuracy, or

laboratory protocols have established new limits. Data

containing multiple detection limits are called multiply

censored data sets.

Several data-analysis procedures are available for

multiply censored data. These procedures can be divided
d.
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into three classes (Helsel, 2005): (1) Simple-Substitution

Methods, (2) Parametric Methods, and (3) Nonpara-

metric Methods.

Simple substitution methods, where arbitrary quanti-

tative values are substituted for each censoring limit,

have been shown by investigators to be the least precise

method (Helsel, 1990). Different disciplines have differ-

ent traditions for the ‘‘best’’ substitution values (Sanford

et al., 1993). One-half, seven-tenths, and one over the

square-root of two times the detection limit are among

the most common substitution values used. However,

any single value between zero and the detection limit is

arguably as good as another. Thus, simple substitution,

particularly when used on multiply censored data, may

introduce a signal that is not present in the data, or

obscure a signal that is present. Simple substitution

produces biased estimates of summary statistics that are

dependent on the value being substituted.

Parametric methods require sufficient data to validate

the use of a specific distributional model—a requirement

that is difficult to meet with small multiply censored

datasets. Additionally, these methods assume a single

distributional model that may, in fact, change for

different grouping factors within a sample population.

The most common classes of assumed distributions with

environmental data are skewed distributions such as the

lognormal and gamma. Less frequently, square-root

transformations or the normal distribution are assumed

when data are less skewed than usually found for trace-

element concentrations (Helsel and Cohn, 1988).

Nonparametric distributional modeling, such as

methods based on Kaplan–Meier statistics, do not

require the assumption of a specific distribution to

estimate summary statistics for multiply censored

datasets.

In between parametric and nonparametric is a

‘‘robust’’ semiparametric method developed by Helsel

and Cohn (1988). This method is an implementation of

what is generally referred to as a regression on order

statistics or ROS.

This communication describes S-language-based soft-

ware tools that perform robust linear ROS. These tools

can be used to generate summary statistics, plot modeled

distributions, and predict or estimate modeled values

based on the modeled distributions. The tools are part of

a software library called NADA for R. The library is

named after Nondetects and Data Analysis: Statistics for

Censored Environmental Data (Helsel, 2005) and is a

add-on package for the R environment for statistical

computing (R Development Core Team, 2003).

1.1. Previous work

Helsel and Cohn (1988) produced a computer

program written in Fortran77 that implements the same

robust ROS methodology described in this communica-
tion. The code also produces estimates of summary

statistics using a maximum likelihood estimation (MLE)

method. Although the statistical methodology of the

code is sound, it has severe operational limitations.

These include: (1) It is difficult to evaluate the quality of

the resultant ROS model—the output is terse and

consists only of the resultant summary statistics. (2) It

is impossible to reuse, or extend, the ROS model in

additional calculations such as prediction, or hypothesis

tests. (3) There are fixed constraints on the input-data

length that can be analyzed—the original code allows up

to 1000 data points. This can only be extended by

modifying and recompiling the code.

Our S-language software provides solutions to the

limitations of the Fortran77 code by leveraging the

features of S-language run-time environments. The

improvements include: (1) methods, or routines, for

the numerical and graphical inspection of resultant

models, (2) resultant models may be easily deconstructed

or extended for use in other computational routines, (3)

there are no limits on input data length (beyond

those imposed by the computer operating system and

hardware).
2. Statistical methodology

The robust ROS method employed in this study was

originally called the ‘‘MR’’ method by Helsel and Cohn

(1988). It is a probability plotting and regression

procedure that models censored distributions using a

linear regression model of observed concentrations vs.

their normal quantiles (or ‘‘order statistics’’). The

method has been evaluated as one of the most reliable

procedures for developing summary statistics of multi-

ply censored data (Shumway et al., 2002).

2.1. Assumptions and limitations

The ROS method assumes that all censoring thresh-

olds are ‘‘left censored’’, i.e., all censored values are ‘‘less

thans’’. It is applicable to any dataset containing 0 to

80% of its values censored. As noted by Helsel and

Cohn (1988) and Helsel (2005), statistics derived from

ROS models of populations having 80% or more

censored values are very tenuous.

For data whose highest detection limit is below the

50th percentile, the median will equal the sample median

computed by standard software without special con-

sideration for censored values. The primary advantages

of using ROS are realized when 50% to 80% of data

are below the highest detection limit, or when estimates

of the mean and standard deviation are required.

Unlike the median, the mean and standard deviation

cannot be estimated without some accommodation for

censoring.
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Additional assumptions are those inherent to linear

regression. This includes the assumptions that the

response variable (concentration) is a linear function

of the explanatory variable (the normal quantiles) and

that the error variance of the model is constant. Since

the statistical distribution of water-quality data is

typically skewed, these assumptions are usually ad-

dressed by transforming the data prior to analysis. Since

most water-quality data with multiple censoring limits

are lognormally distributed, the default behavior of our

routines is to perform a log-normal transformation to

input data prior to computation. However, this feature

can be entirely suppressed or the user may provide an

alternative set of transformation functions.

2.2. Computational methods

The robust ROS method implemented in the software

can be summarized in the following algorithmic steps:

Computation of plotting positions for both censored and

uncensored data: The plotting positions of censored and

uncensored observations are computed using a formula

first described by Hirsch and Stedinger (1987), and later

reformulated by Helsel and Cohn (1988).

Plotting positions of both censored and uncensored

data are computed using the exceedance probability, Ej ,

of each censoring limit. Ej is the probability of exceeding

the jth censoring limit. It is defined as

Ej ¼ Ejþ1 þ ðAj=½Aj þ Bj �Þð1� Ejþ1Þ,

where Aj is the total number of uncensored observations

in the range ½j; j þ 1Þ and Bj is the total number of

observations, censored and uncensored, less than or

equal to the jth censoring limit.

For a given uncensored observation, a Weibull-type

plotting position p can be calculated by considering the

exceedance probability of the censoring limit below

the observation Ej , the exceedance probability of the

censoring limit above the observation Ejþ1, and the

observation’s rank among all the values within the j and

j þ 1 censoring limit. In general, the Weibull-type

plotting positions for uncensored observations are

pðiÞ ¼ ð1� EjÞ þ ðEj � Ejþ1Þri=ðAj þ 1Þ,

where ri is the rank of the ith observation among the

observations in the range ðj; j þ 1� (Hirsch and Stedin-

ger, 1987).

Similarly, the Weibull-type plotting positions for

censored observations are given by

pðiÞ ¼ ð1� EjÞri=ðCj þ 1Þ,

where Cj is the total number of censored values in the

range ðj; j þ 1�.

Forming the linear regression model: A linear regres-

sion of the uncensored observations vs. the normal

quantiles of the uncensored plotting positions is formed.
The normal quantiles of the plotting positions are the

‘‘order statistics’’ of the ROS method.

Estimation of the censored concentrations: The cen-

sored concentrations are modeled using the parameters

of the linear regression and normal quantiles of the

censored data. These modeled censored observations are

only used corporately, along with the uncensored

observations, to model the distribution of the sample

population. Individually, they are not considered the

values that would have existed in the absence of

censoring.

Computation of summary statistics: The observed

uncensored values are combined with modeled censored

values to corporately estimate summary statistics of the

entire population. By combining the uncensored values

with modeled censored values, this method avoids

transformation bias (Helsel and Cohn, 1988).
3. S-language implementation

Our software implementation of the robust ROS

method is written entirely in the S-language, a computer

language designed for data analysis and graphics

(Becker et al., 1988; Chambers, 1998).

There are currently two widely available software

systems that possess the ability to run S-language

software: S-Plus, a proprietary statistical computing

environment developed by the Insightful Corporation,

and ‘‘R’’, an open source computing environment of the

S language developed by the R Development Core Team

(2003). Although both of these software systems contain

S-language interpreters, there are notable differences in

the S-language constructs available in each system.

We have chosen to use R as our primary development

target for our software. Thus, our exposition and

discussion of our software is specific to its use in R.

Currently, the routines will not run on S-Plus.

Our software is a part of a library, or package for the

R environment called NADA for R. The library name is

taken from Helsel (2005) and implements other methods

detailed in the reference.

This communication does not provide documentation

of every function within the NADA for R package.

Additional information on functions in the package is

available through the on-line help system in R.

Examples of the usage of each function, and a

discussion of options and output is provided below.

Throughout the discussion, S-language constructs and

output are set in monospaced font like this. The R
command-line prompt is shown as: 4 (the greater-than

symbol). Where the output is lengthy or is implied from

a previous example, ellipsis (y) are used to designate

that the section has been cut short for the sake of

brevity.



ARTICLE IN PRESS
L. Lee, D. Helsel / Computers & Geosciences 31 (2005) 1241–12481244
3.1. Model construction

The NADA library functions for constructing and

manipulating ROS models are listed in Table 1. For the

following examples, we use a dataset of dissolved arsenic

concentrations in groundwater. These data are a subset

from the US Geological Survey National Water Quality

Assessment (NAWQA) Data Warehouse (Williamson

and Booth, 2004). The data are distributed as a part of

the NADA module and can be loaded using the data()
function after the NADA library has been attached to

the working environment.
Table 1

NADA for R library functio

tion of ROS models. Det

functions is available through

Function name Purp

ros() Con

summary() Verb

plot() Prod

mod

as.data.frame() Con

quantile() Retu

mod

mean() Retu

ROS

median() Retu

ROS

sd() Retu

mod

predict() Pred

mod
4 library(NADA)
4 data(NADA.As)
4 ls()

[1] "As"

4 As
obs censored

1
 0.090
 TRUE

2
 0.090
 TRUE

3
 0.090
 TRUE

4
 0.101
 FALSE

5
 0.136
 FALSE

6
 0.340
 FALSE

7
 0.457
 FALSE

8
 0.514
 FALSE

9
 0.629
 FALSE

...
4

The arsenic dataset is structured in a S-language data

frame which is a table, or spread-sheet like structure.
ns for the creation and manipula-

ailed information on individual

the on-line help system

ose

struct ROS models

ose summary of ROS model

uces a Q–Q norm plot of a ROS

el

verts ROS model to a data frame

rns quantile estimates of an ROS

el

rns the mean of the modeled

data

rns the median of the modeled

data

rns the standard deviation of the

eled ROS data

ict normal quantiles of a ROS

el
The ‘‘obs’’ column is a numeric vector which contains all

the observed arsenic concentration values, both cen-

sored and uncensored. The ‘‘censored’’ column is a

logical vector containing TRUE or FALSE where the

concentrations in ‘‘obs’’ are censored (are a ‘‘less than’’)

or uncensored, respectively.

Typically, analytical data that is received from a

laboratory or downloaded from a database system is not

in the above format. It is common for the censoring

qualifiers, or symbols, to be concatenated with numeric

values in ‘‘less than’’ strings such as o0:5. The NADA
library contains the function, splitQual() that can

separate the character-qualifier symbols from numeric

symbols in these strings and form separate value and

qualifier vectors, or columns. Detailed information on

this function is available through online help by typing

?splitQual.
A new ROS model may be constructed by calling the

ros() function. This function takes two mandatory

arguments, a numeric vector of observations ‘‘(obs)’’
and a logical vector ‘‘censored’’ indicating TRUE or

FALSE, where the corresponding numeric vector

elements are censored or not censored respectively.
4 AsModel ¼ ros(obs ¼ As$obs,
censored ¼ As$censored)
4 AsModel
Mul
 iply-Cen
 ored ROS
 Mod
 l
t s e
N: 50

Censored: 23
% Censored: 46
Mean: 3.41

StdDev: 8.381
Quantiles:

5% 1
0% 2
5% 5
0%

0.0353 0
.0593 0
.1740 0
.6335
75% 9
0% 9
5%

2.7460 6
.1214 1
6.9438
Use summary() to view the linear regression
model

The default textual summary of the model includes an

indication of the percentage of censored values, the

resultant mean, standard deviation and quantiles of the

modeled population.

By default, ros() performs a log-normal transfor-

mation to the data prior to forming the linear regression

model. The reverse transformation (exp) is applied after
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the modeled censored values have been predicted.

This default is because a lognormal transformation

is commonly the best transformation to normalize

error variance in multiply censored water-quality data.

However, the ros() function allows the user to supply

any desired transformation function, or none at all.

This is accomplished using the optional arguments to

the ros function ‘‘forwardT’’ and ‘‘reverseT’’.
These arguments name the forward and reverse

transformation functions that should be applied to

the data (ie., ‘‘log’’ and ‘‘exp’’ for a lognormal

transform). If either or both of these arguments are set

to NULL, no transformation is performed. Thus, the

following example would model would perform

the same analysis as above, without logtransforming

the data:
0.
02
4 ros(obs ¼ As$obs,
-1 0 1 2

Normal Quantiles

Fig. 1. Normal Q–Q plot for a ROS model.
censored ¼ As$censored,
forwardT ¼ NULL)Multiply-Censored ROS
ModelN: 50Censored: 23% Censored: 46Mean:
0.08904StdDev: 11.09
-1 0 1 2

Normal Quantiles

V
al

ue

0.
02

0.
05

0.
20

0.
50

2.
00

5.
00

20
.0

0

95 90 75 50 25 10 5

Percent Chance of Exceedance

Fig. 2. Normal Q–Q plot for a ROS model. Solid circles are

uncensored observations. Open circles are modeled censored

values.
Quanti-
les:5%10%25%50%75%90%95%�14.97�12.30-
4.870.572.846.1216.94Use summary() to
view the linear regression modelNote that

the resultant model predicts negative values. The ROS

routine does not prevent the user from formulating such

models; we feel it is best to leave issues of interpretation

to the user.

3.2. Model plotting and evaluation

For a graphical display of constructed models, the

generic plot() may be used to display a Q–Q plot of

the ROS model and observations.

4 plotðAsModelÞ

The output plot shows the observed, uncensored values,

and the linear regression model as a solid line (Fig. 1).

The plot also shows the normal quantiles of the data

expressed as a percent chance of exceedance.

As an option to the plot function, the user can plot

the modeled censored observations as well (Fig. 2).

4 plotðAsModel; plot:censored ¼ TRUEÞ

Although this feature is useful to help visualize how the

ROS method works, we stress that the modeled censored

observations are only used collectively to model the

distribution of the uncensored population. Modeled

censored values should not be used on an individual basis

to represent the values that would have been detected in

the absence of censoring.

Any of the modeled values shown in Fig. 2 could be

associated with any censored observation having the
same detection limit. None of these modeled values is

necessarily the same as values that would have been

measured had the lab instrument possessed greater

resolution.

The regression models produced by ros() may be

summarized using the generic R function summary()
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which produces a short textual description of the linear

regression model. By specifying the plot ¼ TRUE
option to the summary() function, the routine will

interactively cycle through four plots which graphically

summarize the quality of the linear regression model.
.2
0
4 summary(AsModel, plot ¼ TRUE)
0.
0

id
ua

ls
Call:

lm(formula ¼ obs.transformed � pp.nq)
es

R
Residuals:
2

Min
 1Q
 Median
 3Q
 Max
-0
.
�0.4097
 �0.1531
 �0.0220
 0.1146
 0.4212
4
Coefficients:
0.
E
 -
stimate

Std.

E
rror t
 value P
r(4jtj)
-2 -1 0 1 2 3
Fitted values
(Inter-

cept)

�
0.4604 0
.0560 �
8.21 1
.4e-08 ***
lm(formula = obs.transformed ~ pp.nq)
pp.nq 2
.0132 0
.0591 3
4.07 o
 2e-16 ***
Fig. 3. ROS model residuals plotted against fitted values.

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
-2 -1 0 1 2

-2
-1

0
1

2

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Normal Q-Q plot
Residual standard error: 0.226 on 25 degrees of freedom

Multiple R-Squared: 0.979, Adjusted R-squared: 0.978

F-statistic: 1.16e+03 on 1 and 25 DF, p-value: o2e-16

This command provides four plots which can be used to

evaluate the quality of the linear model fit: a plot of

residuals against fitted values (Fig. 3), a Scale–Location

plot of residuals against fitted values (Fig. 4), a Normal

Q–Q plot of residuals (Fig. 5), and a plot of Cook’s

distances for residuals versus observation number

(Fig. 6). These plots are standard tools in assessing the

quality of a linear model.

It is often useful to deconstruct the ROS model and

use the modeled data in other types of computations.

Any of the standard functions used to manipulate linear

model objects can be used with ROS model objects. This

includes coef() to extract the linear model coefficients,

and resid() to extract the linear model residuals. For

example, the following returns the coefficients of our

arsenic ROS model:

Theoretical Quantiles
lm(formula = obs.transformed ~ pp.nq)
4 coef(AsModel)
Fig. 4. Scale–Location plot of ROS model residuals plotted

(Intercept)
 pp.nq
against fitted values.

�0.46
 2.01
ROS models may also be converted to a data frame

using the generic function as.data.frame():
4 as.data.frame(AsModel)

obs censored
 pp modeled
1
 0.09
 TRUE
 0.040
 0.019

2
 0.09
 TRUE
 0.081
 0.038

3
 0.09
 TRUE
 0.121
 0.060

4
 0.10
 FALSE
 0.210
 0.101

5
 0.14
 FALSE
 0.259
 0.136
6
 0.34
 FALSE
 0.307
 0.340

7
 0.46
 FALSE
 0.356
 0.457

8
 0.51
 FALSE
 0.404
 0.514

9
 0.63
 FALSE
 0.453
 0.629

10
 0.64
 FALSE
 0.501
 0.638

...
4
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The returned data frame contains the original sorted

observations (obs), the associated indication of censor-

ing (censored), the calculated plotting positions (pp),

and the modeled data (modeled). As discussed

above, the modeled data consists of the original

observations where values are uncensored, and data

predicted from the linear model where values are

censored. Note that this conversion discards all of the

linear model information contained in the original

output object.
3.3. Model query and prediction

The software also provides the ability to use ROS

output objects as the basis for simple queries and basic

predictive modeling.

The generic quantile() method can be used to

ascertain the concentration associated with a particular

quantile value. For our example data set, the 15th

percentile occurs at approximately 0:1mg=L:
4 quantile(AsModel, 0.15)
15%

0.0911
Additional generic methods that can operate on ROS

objects include mean(), sd(), and median()
4 mean(AsModel)
[1] 3.41
4 sd(AsModel)
[1] 8.381
4

The generic predict() provides a method to predict

the observation that would occur at a given normal

quantile, given a specific ROS model.
4 predict(AsModel, 1)
[1] 4.73
4

4. Conclusions

Our S-language software enables researchers to per-

form a robust regression on order statistics method for

multiply censored data. These methods are necessary to

correctly estimate statistics for multiply censored data

such as trace-element analyses of water.

The software provides functions for the numerical and

graphical inspection of ROS models that allow users to

evaluate the quality of models. The software also

includes methods that allow the model output to be

easily deconstructed for use in other computations.

We have found this software to be extremely useful in

summarizing trace element distributions and used it as

our primary computational tool in our work on defining

baseline models of trace elements in ground water of the

United States (Lee and Helsel, in press).

The software is part of a developing project and will

include enhancements as our work continues. Future

enhancements will include maximum likelihood, survival

analysis, and other methods described in Helsel (2005).
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Appendix A. Obtaining and Installing NADA for R

The functions described in this communication are

part of a software library, or package, for the R

statistical computing environment called NADA for R.

The primary requirement for running the software is a

working installation of the R environment. R is free

software and can be obtained, used, and modified at no

monetary cost (R Development Core Team, 2003). We

have made our software available under the same

conditions as R itself. Thus, it is possible for entities

to use and extend our software even if conditions of law

or finance prohibit the use of a nonfree software

solution.

Once R is installed and the machine has a functioning

Internet network connection, the NADA package may

be automatically installed using the following command:

4install.packages( ‘ ‘ NADA’’)

Alternatively, the package may be manually installed by

downloading it from the Comprehensive R Archive

Network at http://cran.r-project.org and using the

standard package installation methods described at this

site and in the R documentation.

The US Geological Survey also maintains a larger,

more extensive S-Plus package for water-resource

statistics (Slack et al., 2003). At the time of publication,

this package does not contain the code described in this

communication. However, the S-Plus package does

contain an implementation of ROS based on the older

Fortran code by Helsel and Cohn (1988) discussed

above.
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