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Binary Logistic Regression

Predicts: the probability of getting a 1
= (1 – prob of getting a 0)

using a familiar equation:
Y  =  b0 + b1X1 + b2X2 + …

Application to censored data:
Predict the probability of a concentration above a reporting limit (1, a “hit”) 

as a function of one or more X variables
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Logistic Regression Equation
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One Use of Logistic Regression

Compute from the equation over a grid of points, 
contour and map the probability of detecting TCE, 
nitrate or other contaminants.
Modeled as a function of geology, land use, and 
well depth.

From Erwin and Tesoriero (1997)
USGS Fact Sheet 061-97
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Binary Logistic Regression

Y  =  b0 + b1X1 + b2X2 + …

Where Y is a “logit”, the log of the odds:
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Binary Logistic Regression

Applied to data with nondetects, and Y=1 is 
a concentration at or above the DL:
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Example: VOCs in ground water

Population Density, in people per acre

The Y variable has only 0s and 1s.  How do we get a probability?
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OLS regression would not fit these data well

Population Density, in people per acre 8

Residuals would look 
nothing like a normal 
distribution, as 
required by OLS

Predicted values 
could go below 0 or 
above 1
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1950s:  Split into categories and compute 
proportion of 1s (detects)

Population Density, in people per acre
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Logistic regression solves this problem in a better way
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The S-shaped curve has the formula

log 

or

Prob [y=1] = 

where X may be a vector of explanatory variables
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Binary Logistic Regression

• Solve iteratively for the best estimates of the coefficients b0 and b1
by Maximum Likelihood Estimation.

• No assumption of normality of residuals or constant variance 
required.  It is still a parametric model, with an S shape.  It assumes 
the X’s have a linear relationship to the logit Y scale.

11

X
p
p

101
log ββ +="

#

$
%
&

'

−

Practical Stats .com

<© PracticalStats.com

Log likelihood function

lnL = 

where       are the estimated probabilities, and yi
are the observed values (1 or 0)

lnL is a negative number, which is maximized 
(brought close to 0).
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Example TCELogReg.rda

> load(TCELogReg)
> attach(TCELogReg)

Again, TCE concentrations in ground water.  There were 3 reporting 
limits, so the highest at 5 ug/L was used. 

A column ”GT5” with 1 if TCE ≥ 5 ug/L, 0 otherwise has been added 
for use in logistic regression.

Explanatory variables:  population density, %industrial land use, and 
depth to water.
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Logistic regression in R:  glm
> GLM.1 <- glm(GT5 ~ DEPTH + PctIND + POPDEN, family=binomial(logit) )

> summary(GLM.1)

Coefficients:

Estimate Std. Error z value    Pr(>|z|)    

(Intercept) -2.851419   0.544281  -5.239 0.000000162 ***

DEPTH       -0.001336   0.001701  -0.785     0.43223    

PctIND 0.013361   0.040892   0.327     0.74387    

POPDEN       0.153922   0.051981   2.961     0.00307 ** 

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 182.69  on 246  degrees of freedom

Residual deviance: 169.82  on 243  degrees of freedom

AIC: 177.82
14

General Linear Model (glm)
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Measures of Error
R reports: Residual deviance: 169.82  
for the DEPTH + PctIND + POPDEN model

Residual deviance = Dmodel = -2lnL .  It’s a measure of error.

From this we can compute lnL, the Log-Likelihood was = -84.91

• lnL or Deviance D in themselves provide little information to the user. 

• Computed from the sum of errors for each observation, so there’s no “good” 
or “bad” Deviance.  The magnitude depends on the number of obs.

• The difference in Deviance (error) between models determines whether one 
model is better than another

15

Practical Stats .com

<© PracticalStats.com

Overall Likelihood ratio test  G
The overall likelihood ratio test compares errors for a model to errors for a null model (with no x variables).  This is not 
given by default in the output of glm, so we’ll first compute the null model, and then use the anova command to 
perform the chi-square test of difference in models.

G = (Deviance null – Deviance model )
> GLM.0 <- glm(GT5 ~ 1, family=binomial(logit))

> anova(GLM.0, GLM.1, test="Chisq")

Analysis of Deviance Table

Model 1: GT5 ~ 1

Model 2: GT5 ~ DEPTH + PctIND + POPDEN

Resid. Df Resid. Dev Df Deviance Pr(>Chi)   

1       246     182.69                        

2       243     169.82  3   12.872 0.004922 **

• The test statistic has a small p-value.  Rejecting the null hypothesis means that the GLM.1 model is better than 
no model at all.

• With no x variables in GLM.0, the best guess for the probability of a 1 is the observed proportion of events:
(# 1’s / n).  By rejecting this it states that a better prediction of %1s can be computed with the X variable values.

16
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The null model

Log likelihood for the null (no x variable) model (L0) Lnull = -91.35
Dnull = -2*(-91.35)= 182.69

Rejecting this null hypothesis says that using these x variables, 
a better prediction of the probability of a 1 is possible.   But is 
this the best model?  Should all 3 variables be in the model?

For that we need either AIC, or for nested models the partial 
likelihood or partial Wald’s tests.

17

Practical Stats .com

<© PracticalStats.com

Model Selection
Step 1.  Check for multicolinearity

Check for multicolinearity using VIFs
> vif(GLM.1) 

Coefficients:

DEPTH   PctIND POPDEN 

1.104578 1.020438 1.125963 

For the definition of the VIF, see the multiple regression lecture.

18

No multcollinearity found.  The 
reported p-values can therefore 
be trusted.
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Step 2a. Test whether to transform an X 
variable

A quick test to determine whether the relationship between the log(odds) and the X 
variables are linear is using the residualPlots command in the car package.  You’ll get 
plots (unless you specify plot = FALSE) and a test, where the null hypothesis is that the 
X variable is sufficiently linear and no transform is needed.  Small p-values indicate you 
should transform that X variable.
> residualPlots(GLM.1, type = "deviance")

Test stat   Pr(>|Test stat|)   
DEPTH     0.8353          0.360732   

PctIND 0.2380          0.625636   

POPDEN    8.6565          0.003259 **

19

The small p-value for 
POPDEN indicates that it 
should be transformed
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Residuals Plots
It would be nice if these 
residuals plots would 
function like crPlots.  
However, they are more 
difficult to interpret.  The 
two groups are because 
(observed - predicted) will 
be negative for the 
observed Y=0 data, and 
positive for the Y=1 data.  
The smooth is staying 
within the Y=0 data, 
indicating that the 
regression may not predict 
the Y=1 data well.
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Step 2b. Test whether to transform an X 
variable

Box and Tidwell (1962) provided a simple method to determine whether to transform an X 
variable in a regression model.  This pre-dates component+residuals plots (crPlots) now 
used in OLS.  For logistic regression, some attempts at crPlots have been made but 
aren’t yet satisfactory. The Box-Tidwell (BT) procedure is still useful.  

1. Construct a variable Xc = X*log(X) to detect curvature in X, adding it to the regression

2. If the slope bc on Xc is significant, use Xt instead of X in a subsequent regression 
model, where t is the power transform coefficient.  Note that t=0 for a log transform.

3. A guide to the appropriate transformation to use is t = 1 + (bc / bX) where bc is the 
slope on Xc and bX is the slope on X in the regression model.  Pick a simple power 
transform near the value of t, and use the model with lowest AIC.
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Step 2b. Test whether to transform an X 
variable

Construct the Box-Tidwell variables to test curvature:
> TCELogReg$BT.depth <- DEPTH*log(DEPTH)
> TCELogReg$BT.popden <- POPDEN*log(POPDEN)

PctIND is a percentage, so don’t try to transform it.  Leave its units alone.
> GLM.2 <- glm(GT5 ~ DEPTH + PctIND + POPDEN + BT.depth + BT.popden,  

family=binomial(logit), data=TCELogReg)

22
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Test whether to transform an X variable
>  summary(GLM.2)

Estimate Std. Error z value Pr(>|z|)    

(Intercept) -7.659383   2.004852  -3.820 0.000133 ***

DEPTH        0.040528   0.030652   1.322 0.186113    

PctIND 0.009287   0.041161   0.226 0.821495    

POPDEN       1.834279   0.696051   2.635 0.008407 ** 

BT.depth -0.006564   0.004800  -1.367 0.171469    

BT.popden -0.549212   0.227635  -2.413 0.015835 *  

Null deviance: 182.69  on 246  degrees of freedom

Residual deviance: 159.62  on 241  degrees of freedom

AIC: 171.62
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Is significant, so use 
POPDENt instead of 
POPDEN as the X 
variable

Not significant.  Don’t transform DEPTH

t = 1 + (bc / bX) = 1 + (-0.549/ 1.83)  ≅ 0.7    Try square root or log of POPDEN
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Which transformation to use?
the one with lower AIC

> sqrt.popden <- sqrt(POPDEN)

>  GLM.3 <- glm(GT5 ~ DEPTH + PctIND + sqrt.popden, 
family=binomial(logit)) 

>  summary(GLM.3)

Estimate Std. Error z value   Pr(>|z|)    

(Intercept) -4.055547   0.860918  -4.711 0.00000247 ***

DEPTH       -0.001265   0.001686  -0.750    0.45309    

PctIND 0.009692   0.041107   0.236    0.81361    

sqrt.popden 0.900216   0.280947   3.204    0.00135 ** 

Null deviance: 182.69  on 246  degrees of freedom

Residual deviance: 167.19  on 243  degrees of freedom

AIC: 175.19

> TCELogReg$lnPOPDEN <- log(POPDEN)

>  GLM.4 <- glm(GT5 ~ DEPTH + PctIND + lnPOPDEN, 
family=binomial(logit))

>  summary(GLM.4)

Estimate Std. Error z value   Pr(>|z|)    

(Intercept) -3.787534   0.800436  -4.732 0.00000222 ***

DEPTH       -0.001360   0.001684  -0.808    0.41916    

PctIND 0.007113   0.041091   0.173    0.86257    

lnPOPDEN 1.150996   0.357714   3.218    0.00129 ** 

Null deviance: 182.69  on 246  degrees of freedom

Residual deviance: 165.10  on 243  degrees of freedom

AIC: 173.1

24

better 2-variable model
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AIC
A cost-benefit analysis

Unexplained noise, as 
expressed by the overall 

likelihood ratio test.  
Reducing it is the

Benefit

2 * # parameters 
(including intercept).

Improves fit, but decreases 
degrees of freedom.

Cost
25

AIC = 2p + G
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Step 3.  Which X variables to keep in the 
model?

To compare nested models and pick the best one, use partial likelihood 
ratio tests:

Gpartial = 2 (lnLc - lnLs) = Ds - Dc

where lnLc and Dc are for the more complex model (more X variables), 
and lnLS and Ds are for the simpler model.

Compare Gpartial to a chi-square distribution with degrees of freedom 
equal to the number of additional variables in the more complex model.

Partial tests for models that differ by only 1 variable are reported in the 
regression output section, to determine each variable’s effect.

26
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Partial Tests

>  summary(GLM.4)

Estimate Std. Error z value   Pr(>|z|)    

(Intercept) -3.787534   0.800436  -4.732 0.00000222 ***

DEPTH       -0.001360   0.001684  -0.808    0.41916    

PctIND 0.007113   0.041091   0.173    0.86257    

lnPOPDEN 1.150996   0.357714   3.218    0.00129 ** 

Null deviance: 182.69  on 246  degrees of freedom

Residual deviance: 165.10  on 243  degrees of freedom

AIC: 173.1
27

The p-value for PctIND compares this 3-

variable model to a 2-variable model with 
only DEPTH and lnPOPDEN as the 

variables.  Since the p-value is large, do not 
reject the null hypothesis that the slope 
coeff. for PctIND equals 0, and provides no 

explanatory power.  Drop this variable from 
the model and check whether the AIC has 

improved.  It should.

These tests compare two nested models to select the better one. 
>  GLM.4 <- glm(GT5 ~ DEPTH + PctIND + lnPOPDEN, family=binomial(logit))
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Partial Tests
>  GLM.5 <- glm(GT5 ~ DEPTH + lnPOPDEN, family=binomial(logit))
>  summary(GLM.5)

Estimate Std. Error z value  Pr(>|z|)    

(Intercept) -3.774908   0.797359  -4.734 0.0000022 ***
DEPTH       -0.001350   0.001685  -0.801    0.4230    
lnPOPDEN 1.158548   0.355085   3.263    0.0011 ** 

Null deviance: 182.69  on 246  degrees of freedom

Residual deviance: 165.13  on 244  degrees of freedom
AIC: 171.13

Three-variable model (GLM.4) with PctIND had an AIC of:    AIC: 173.1
The AIC is smaller for the 2-variable model.  It is better than the 3-variable model.

DEPTH does not have a significant p-value.  How does this compare to a 1-variable model?
28
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Partial Tests -- Compare 2 nested models
> anova (GLM.4, GLM.5, test = "Chisq")
Analysis of Deviance Table

Model 1: GT5 ~ lnPOPDEN + PctIND + DEPTH
Model 2: GT5 ~ DEPTH + lnPOPDEN
Resid. Df Resid. Dev Df  Deviance Pr(>Chi)

1       243     165.10                      
2       244     165.13 -1 -0.029573   0.8635

The null hypothesis is that the simpler model is better -- the additional variable(s) not in the 
simpler model do not affect the deviance very much, and should be dropped.  The p-value of 
0.8635 says to not reject this null hypothesis.  Therefore the simpler 2-variable model is better -
nothing much is lost by dropping out PctIND.  This agrees with the AIC values.

29
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Partial Tests
>  GLM.6 <- glm(GT5 ~ lnPOPDEN, family=binomial(logit))
>  summary(GLM.6)

Estimate Std. Error z value  Pr(>|z|)    
(Intercept)  -4.1362     0.7030  -5.884 0.00000000401 ***
log(POPDEN)   1.2515     0.3497   3.579      0.000345 ***

Null deviance: 182.69  on 246  degrees of freedom
Residual deviance: 165.85  on 245  degrees of freedom
AIC: 169.85

Two-variable model (GLM.5) had an AIC of:   AIC: 171.13
This AIC for this 1-variable model is smaller.  If the p-value on the variable that was 
dropped (DEPTH) had been 0.10 or less, I’d choose the 2-variable model.  It was not, 
so this 1-variable model is better. 30
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Compare 2 nested models
> anova(GLM.6, GLM.4, test="Chisq")
Analysis of Deviance Table

Model 1: GT5 ~ lnPOPDEN
Model 2: GT5 ~ DEPTH + PctIND + lnPOPDEN
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1       245     165.85                     
2       243     165.10  2  0.74794    0.688

The null hypothesis is that both slope coefficients for the variables not in the simpler model 
equal 0, and the variables should be dropped.  The p-value of 0.688 says to not reject this 
null hypothesis.  Therefore the simpler 1-variable model is better - nothing much is lost by 
dropping the other two variables out.  This agrees with the AIC values.

31
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Choose the model with the smallest AIC

Model 2p -2lnL AIC
lnPOPDEN 4        165.85             169.85
Depth                              4        179.53             183.53

%indlu 4        181.97             185.97
lnPOPDEN, depth          6        165.93             171.93

lnPOPDEN, %indlu 6        165.83             171.83
Depth, %indlu 6        178.91             184.91

lnPOPDEN, depth, %indlu 8        165.10             173.10
POPDEN, depth, %indlu 8        169.82             177.82

How to compare non-nested models?

32
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Automated Model Selection
After first deciding whether or not to transform any of the X variables, you may use the bestglm function
in the bestglm package.  It minimizes the BIC (default), AIC, or other criterion to determine which set of
explanatory variables has the most ability to correctly predict the log odds.
NOTE: bestglm requires a dataset whose columns are first all of the X variables, with the last column
being the Y 0/1 variable).  Create that with the data.frame command.

> TCEbest <- data.frame(PctIND, DEPTH, lnPOPDEN, GT5)

> install.packages("bestglm")

> library(“bestglm“)

> bestglm(TCEbest, family = binomial(logit), IC = "AIC")

Morgan-Tatar search since family is non-gaussian.

AIC Best Model:

Estimate Std. Error   z value Pr(>|z|)

(Intercept) -4.136235  0.7029967 -5.883719 0.000000004011498

lnPOPDEN 1.251458  0.3496746  3.578921 0.000345015951851

33
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Step 4.  Interpreting Coefficients
What does a slope of 1.2515 for log(POPDEN) mean?

Estimate Std. Error z value      Pr(>|z|)    
(Intercept)  -4.1362     0.7030  -5.884 0.00000000401 ***
log(POPDEN)   1.2515     0.3497   3.579      0.000345 ***

• The slope has a positive sign, so the probability of TCE ≥ 5  increases as 
log(POPDEN) increases, and so as POPDEN itself increases.

• For a unit increase in log(POPDEN) the log-odds increases by 1.25.  This 
corresponds to a (e 1.25) = 3.49 multiplier (called the ‘odds ratio’) to the odds 
[p /(1-p)] .  This can be printed out by the computation:

>  exp(coef(GLM.6))  # Exponentiated coefficients ("odds ratios")
(Intercept)    lnPOPDEN
0.01598292  3.49543425 
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Interpreting Negative Coefficients
Suppose the 2-variable model GLM.5 had been chosen.  What would a negative coefficient for DEPTH mean?

Estimate Std. Error z value  Pr(>|z|)    

(Intercept) -3.774908   0.797359  -4.734 0.0000022 ***

DEPTH       -0.001350   0.001685  -0.801    0.4230    

lnPOPDEN 1.158548   0.355085   3.263    0.0011 ** 

>  exp(coef(GLM.5))  # odds ratios for a negative slope

(Intercept)       DEPTH    lnPOPDEN

0.0229392   0.9986511   3.1853043 

The slope of -0.0013 says the probability of TCE ≥ 5  decreases as depth increases. For a unit increase in 
depth, there is an (e -0.0013 ) = 0.9987 multiplier, or a 0.13% decrease, in the odds [p /(1-p)]  for TCE ≥ 5.

35
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Step 5.  Evaluating the chosen model

a. Everyone wants an r2. Likelihood r2 are available for logistic regression.  
As with OLS, they are not helpful for deciding between models with 
different numbers of X variables.  The model with more X variables will 
always have a higher r2.  They are helpful for deciding which power 
transformation of an X variable to use.  For GT5 ~ POPDEN, r2 = 0.091 
while for GT5 ~ lnPOPDEN, r2 = 0.126.  Therefore the log units are 
better.

b. Graphs
c. Measure Predictive Ability

Pair up the data.  Will be n(n-1)/2 = M combinations of data pairs

36
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There are several “pseudo-r2” methods.  See the correlation video, and   https://statisticalhorizons.com/r2logistic
For logistic regression, these tend to be much lower than for ordinary least-squares regression.  One of the most 
recommended versions is the Nagelkerke (or rescaled likelihood) r-squared:

RN2 = 
"#$%&(()*+,-./ )

"#$%&(12/4)

where n is the number of observations, Gmodel is the model likelihood ratio test statistic, and D0 is the Deviance of the 
null model.  So RN2 compares the model to the null model in a “proportion of likelihood explained” type of statistic, 
though not a proportion of variance explained scale as in least-squares regression.  See

Nagelkerke, N. J. D. 1991. A note on the general definition of the coefficient of determination. Biometrika, 78:3, 691-
692.
For the one-variable log(POPDEN) model:

RN2 = 
"#567 #89.;<=<>

"#567 #8;=.9?=<>
= 0.126

A small amount of variation has been explained by the model.  There are probably other X variables not currently in this 
dataset that should be added to this model before its use for prediction is reliable.

5a.  Nagelkerke r2

37
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Several model evaluation statistics are computed using the logistic regression command in the rms package 
(yes, another package to install and load)

> install.packages("rms")

click the box next to rms to load it.  Then,

> lrm6 <- lrm(GT5~lnPOPDEN)    # logistic regression model -- lrm

> lrm6

Logistic Regression Model 

Model Likelihood     Discrimination    Rank Discrim.    

Ratio Test           Indexes           Indexes       

Obs 247    LR chi2      16.84    R2       0.126    C       0.726    

0            217    d.f. 1    g        1.097    Dxy 0.452    

1             30    Pr(> chi2) <0.0001    gr       2.996    gamma   0.500    

max |deriv| 6e-11                          gp 0.094    tau-a   0.097    

Brier    0.101                     

Coef S.E.   Wald Z Pr(>|Z|)

Intercept -4.1362 0.7030 -5.88  <0.0001 

lnPOPDEN 1.2515 0.3497  3.58  0.0003

5a. Nagelkerke r2

38

Nagelkerke (rescaled likelihood) r2
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Step 5b.  Plots of model effects
Plot the predicted probability against one or more X variables
> d6 = datadist(lnPOPDEN, GT5)  # 2 lines to tell R what original variables were used
> options(datadist = "d6")
> plot(Predict(lrm6))

Gray area shows the 95% confidence
bands for the model.
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Step 5b.  Plots of model effects
If we recreate the 2-variable GLM.5 model using the lrm command: 
> d5 = datadist(lnPOPDEN, DEPTH, GT5)
> options(datadist = "d5")
> lrm5 <- lrm(GT5 ~ lnPOPDEN + DEPTH)
> plot(Predict(lrm5))
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Step 5b.  Plot the Predicted Probabilities
> pof1 <- exp(GLM.6$linear.predictors) / (1 + exp(GLM.6$linear.predictors)) 
> pred.6df <- data.frame(lnPOPDEN, GT5, pof1)
> psort <- order(lnPOPDEN) 
> plot(lnPOPDEN, GT5, 

xlab = "ln(Population Density)", 
ylab = "Prob (GT5 = 1)")

> lines(lnPOPDEN[psort], 
pof1[psort], col = "blue")
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Note that the predicted probability 
never goes above 0.4.  Assuming a 
0.5 cutoff, the model isn’t predicting a 
detection above 5 ug/L for any 
observation.  That is its biggest 
problem.
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Step 5c.  Measure predictive ability
• The goal is to determine how well the predicted probabilities match the observed data (0 or 1).
• There are n(n-1)/2 = M combinations of data pairs.  Many of the measures look at the change 

in prediction from an observed 0 to an observed 1, or from an observed 1 to a 0.
• All but one tau-a drops out data pairs where both values are observed 0s, or observed 1s.  M’ 

is the number of pairs with different observed values.  M’ < M 
• Do the predicted probabilities (of a 1) increase when going from an observed 0 to a 1?  This is 

a concordant result.  C = number of concordant results.
• If the predicted probability (of a 1) decreases when going from an observed 0 to a 1, this is a 

discordant result.  D = number of discordant results.
• If the probability (of a 1) does not change when going from an observed 0 to a 1, this is a tie.  

T = number of tied results.
• M’ = C + D + T

42
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Step 5c.  Measure predictive ability
Measures of Association For GLM.6 Comment

Kendall’s tau-a = A#1
4(4#")/B

= 0.097 Is always small due to many 1-1 and 0-0 ties.

Not helpful

Kendall’s tau-b = A#1

AC1CDE (AC1CDF)
= 0.223 tau adjusted for ties.  Compute w/ cor.test. 

Somer’s Dxy = 2𝐴𝑈𝐶 − 1 = 0.452 Higher is better.  Ignores 0-0 and 1-1 pairs.

=  A#1
AC1CD

AUC = AC2.MD
AC1CD

= 0.726 Area under ROC curve.  Higher is better.

If 0.8 <= C < 0.9, excellent discrimination

If 0.7 <= C < 0.8, acceptable discrimination

Brier score = ∑OP8
/ Q7O#RO =

4
= 0.103           Mean squared error of prediction.  Lower is better.
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3 most useful

None of these tell you that the predictions for GLM.6 are wrong for all data above 5 ug/L

Higher is better.
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> lrm6 <- lrm(GT5~lnPOPDEN)    # logistic regression model -- lrm
> lrm6
Model Likelihood     Discrimination    Rank Discrim.    

Ratio Test           Indexes           Indexes       
Obs 247    LR chi2      16.84    R2       0.126    C       0.726    
0            217    d.f. 1    g        1.097    Dxy 0.452    
1             30    Pr(> chi2) <0.0001    gr       2.996    gamma   0.500    
max |deriv| 6e-11                          gp 0.094    tau-a   0.097    

Brier    0.101                     
Coef S.E.   Wald Z Pr(>|Z|)

Intercept -4.1362 0.7030 -5.88  <0.0001 
lnPOPDEN 1.2515 0.3497  3.58  0.0003

> cor.test(GLM.6$linear.predictors, GT5, method = "kendall")
Kendall's rank correlation tau

z = 4.0468, p-value = 5.193e-05
alternative hypothesis: true tau is not equal to 0
tau   0.2227567 

Step 5c.  Measure predictive ability
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Brier: Brier score

C: AUC

Dxy: Somer’s Dxy

tau-a Kendall’s tau-a
cor.test tau: Kendall’s tau-b
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Exercise
Atrazine was measured in streams throughout the midwestern United States, in an 
area where corn is heavily grown.  The dataset is ReconLogistic.RData
Are atrazine detections at a reporting limit =1 (GT_1 variable) a predictable function of 
the following land-use and climate variables?
Build the best logistic regression model you can for the recon data.

Use the following 6 of the 8 possible X variables:
APPLIC amount of pesticide applied
corn%    % of basin planted in corn
soilgp soil permeability - from the Census of Agriculture
precip amount of recent precipitation
dyplant days since planting (~ since atrazine last applied)
fpctl percentile of streamflow
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